Features of neurohumoral regulation of contractile activity of colon smooth muscle tissue.
Main Article Content
Abstract
The colon performs several important functions. All of them are performed with the participation of smooth muscle tissue of the intestinal wall and require optimal implementation of precise regulatory influences. Coordinated contractions of the muscular coat of the colon are determined by a complex of interconnected myogenic mechanisms, metasympathetic nerve reflexes and humoral factors, led by the effects of nervous system structures. In this article, we attempted to review the leading mechanisms of neuro-humoral regulation of the motor function of the colon. The aim of the study was to systematize the information in the scientific literature on the neuro-humoral regulatory mechanisms of the motor function of the colon. A comparative analysis of modern literature was carried out by processing scientific sources presented in the scientometric databases PubMed, Scopus, Web of Science, Cochrane Library and others over the past 10 years. We used the search terms “colon”, “nervous regulation”, “humoral regulation”, “enteric nervous system”, “muscular membrane of the colon” and others.
Regulation of the motor function of the colon is a complex process that includes several stages of nervous and humoral influences, starting from local reflexes of the intestine and ending with the brain. Stretching of the intestinal wall by chyme leads to the secretion of serotonin, which activates local metasympathetic reflexes with the participation of enteric neurons. The latter secrete excitatory neurotransmitters that enhance the motility of the more proximal part of the intestine. At the same time, inhibitory mediators cause relaxation of the muscles below the site of mechanotransduction. Due to these processes, the contents of the intestine move towards the rectum. The nervous influences of extra-organ nerves and local metasympathetic centers are combined with numerous complex humoral effects. In this case, stimulation of intestinal motility requires the participation of the cholinergic system, as well as purines and some other regulatory peptides. Serotoninergic, tachykininergic and sympathetic effects in this complex neuro-humoral regulatory process play a modulating role. The final acceptor is the release of acetylcholine by cholinergic excitatory motoneurons and nitric oxide and VIP by nonadrenergic noncholinergic inhibitory motoneurons.
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
AGREEMENT ABOUT TRANSMISSION OF COPYRIGHT
I, the author of the article / We, the authors of the manuscript _______________________________________________________________________
in case of its acceptance for publication, we transfer the following rights to the founders and editorial boards of the scientific publication "Cherkasy University Bulletin: Biological Sciences Series":
1. Publication of this article in Ukrainian (English) and distribution of its printed version.
2. Dissemination of the electronic version of the article through any electronic means (placing on the official journal web site, in electronic databases, repositories, etc.). At the same time we reserve the right without consent of the editorial board and the founders:
1. Use the materials of the article in whole or in part for educational purposes.
2. To use the materials of the article in whole or in part for writing your own theses.
3. Use article materials to prepare Summarys, conference reports, and oral presentations.
4. Post electronic copies of the article (including the final electronic version downloaded from the journal's official website) to:
a. personal web-pecypcax of all authors (web sites, web pages, blogs, etc.);
b. web-pecypcax of the institutions where the authors work (including electronic institutional repositories);
with. non-profit, open-source web-pecypcax (such as arXiv.org).
With this agreement, we also certify that the submitted manuscript meets the following criteria:
1. Does not contain calls for violence, incitement of racial or ethnic enmity, which are disturbing, threatening, shameful, libelous, cruel, indecent, vulgar, etc.
2. Does not infringe the copyrights and intellectual property rights of others or organizations; contains all the references to the cited authors and / or publications envisaged by applicable copyright law, as well as the results and facts used in the article by other authors or organizations.
3. It has not been previously published in other publishers and has not been published in other publications.
4. Does not include materials that are not subject to publication in the open press, in accordance with applicable law.
____________________ ___________________
First name, Last name, signature of the author
"___" __________ 20__
References
Bharucha AE, Lacy BE. Mechanisms, Evaluation, and Management of Chronic Constipation. Gastroenterology. 2020 Apr;158(5):1232-1249.e3. doi: 10.1053/j.gastro.2019.12.034.
Arthur T, Burgess A. Acute Colonic Pseudo-Obstruction. Clin Colon Rectal Surg. 2022 Aug 12;35(3):221-226. doi: 10.1055/s-0041-1740044.
Heitmann PT, Vollebregt PF, Knowles CH, Lunniss PJ, Dinning PG, Scott SM. Understanding the physiology of human defaecation and disorders of continence and evacuation. Nat Rev Gastroenterol Hepatol. 2021 Nov;18(11):751-769. doi: 10.1038/s41575-021-00487-5.
Mearin F, Lacy BE, Chang L, Chey WD, Lembo AJ, Simren M, Spiller R. Bowel Disorders. Gastroenterology. 2016 Feb 18;150(6):1393- 1407. DOI: 10.1053/j.gastro.2016.02.031.
Corsetti M, Costa M, Bassotti G, Bharucha AE, Borrelli O, Dinning P, Di Lorenzo C et al. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nat Rev Gastroenterol Hepatol. 2019 Sep;16(9):559-579.
Lambrinos G, Cristofaro V, Pelton K, Bigger-Allen A, Doyle C, Vasquez E et al. Neuropilin 2 Is a Novel Regulator of Distal Colon Contractility. Am J Pathol. 2022 Nov;192(11):1592-1603.
Nakamori H, Hashitani H. Neural targets of the enteric dopaminergic system in regulating motility of rat proximal colon. Pflugers Arch. 2023 Nov;475(11):1315-1327. doi: 10.1007/s00424-023-02849-1.
Martin AM, Jones LA, Wei L, Spencer NJ, Sanders KM, Ro S, Keating DJ. Distinguishing the contributions of neuronal and mucosal serotonin in the regulation of colonic motility. Neurogastroenterol Motil. 2022 Aug;34(8):e14361. doi: 10.1111/nmo.14361.
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev. 2023 Apr 1;103(2):1487-1564.
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020 Jun;17(6):338-351. doi: 10.1038/s41575-020-0271-2.
Huizinga JD, Hussain A, Chen JH. Interstitial cells of Cajal and human colon motility in health and disease. Am J Physiol Gastrointest Liver Physiol. 2021 Nov 1;321(5):G552-G575. doi: 10.1152/ajpgi.00264.2021.
Veress B, Ohlsson B. Spatial relationship between telocytes, interstitial cells of Cajal and the enteric nervous system in the human ileum and colon. J Cell Mol Med. 2020 Mar;24(6):3399-3406.
Mawe GM, Sanders KM, Camilleri M. Overview of the Enteric Nervous System. Semin Neurol. 2023 Aug;43(4):495-505. doi: 10.1055/s-0043-1771466.
Huizinga JD. Recent advances in intestinal smooth muscle research: from muscle strips and single cells, via ICC networks to whole organ physiology and assessment of human gut motor dysfunction. J Smooth Muscle Res. 2019;55:68-80. DOI: 10.1540/jsmr.55.68.
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol. 2019 Oct;320:113009. doi: 10.1016/j.expneurol.2019.113009.
Meerschaert KA, Davis BM, Smith-Edwards KM. New Insights on Extrinsic Innervation of the Enteric Nervous System and Non-neuronal Cell Types That Influence Colon Function. Adv Exp Med Biol. 2022;1383:133-139. doi: 10.1007/978-3-031-05843-1_13.
Humenick A, Chen BN, Lauder CI, Wattchow DA, Zagorodnyuk VP, Dinning PG, et al. Characterization of projections of longitudinal muscle motor neurons in human colon. Neurogastroenterol Motil. 2019 Oct;31(10):e13685. DOI: 10.1111/nmo.13685.
Nakamori H, Naitou K, Horii Y, Shimaoka H, Horii K, Sakai H et al. Roles of the noradrenergic nucleus locus coeruleus and dopaminergic nucleus A11 region as supraspinal defecation centers in rats. Am J Physiol Gastrointest Liver Physiol. 2019 Oct 1;317(4):G545-G555. doi: 10.1152/ajpgi.00062.2019.
Brehmer А. Classification of human enteric neurons. Histochem Cell Biol. 2021 Aug;156(2):95-108.
Chen BN, Humenick AG, Hibberd TJ, Yew WP, Wattchow DA, Dinning PG et al. Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry. Front Neurosci. 2024 Jan 16;17:1313057. doi: 10.3389/fnins.2023.1313057.
Zhang Y, Paterson WG. Characterization of the peristaltic reflex in murine distal colon. Can J Physiol Pharmacol. 2016 Feb;94(2):190-198. DOI: 10.1139/cjpp-2015-0086.
Johnson DE, Drummond E, Grimwood S, Sawant-Basak A, Miller E, Tseng E, et al. The 5-hydroxytryptamine 4 receptor agonists prucalopride and PRX-03140 increase acetyl-choline and histamine levels in the rat prefrontal cortex and the power of stimulated hippocampal в oscillations. J Pharmacol Exp. 2012;341(3):681-91.
Parker DR, Wiklendt L, Humenick A, Chen BN, Sia TC, Wattchow DA et al. Sympathetic Pathways Target Cholinergic Neurons in the Human Colonic Myenteric Plexus. Front Neurosci. 2022 Mar 17;16:863662.
Camilleri M, David R Linden DR. Measurement of Gastrointestinal and Colonic Motor Functions in Humans and Animals. Cell Mol Gastroenterol Hepatol. 2016 Jul;2(4):412-428.
Duan H, Cai X, Luan Y, Yang S, Yang J, Dong H, et al. Regulation of the Autonomic Nervous System on Intestine. Front Physiol. 2021 Jul 14;12:700129. DOI: 10.3389/fphys.2021.700129.
Smith-Edwards KM, Edwards BS, Wright CM, Schneider S, Meerschaert KA, Ejoh LL, et al. Sympathetic Input to Multiple Cell Types in Mouse and Human Colon Produces Region-Specific Responses. Gastroenterology. 2021 Mar;160(4):1208-1223.
Fung C, Berghe PV. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci. 2020 Nov;77(22):4505-4522. DOI: 10.1007/s00018-020-03543-6.
Spencer NJ, Hibberd TJ, Travis L, ,Wiklendt L, Costa M, Hu H, et al. Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle. J Neurosci. 2018 Jun 13;38(24):5507-5522
Gould TW, Swope WA, Heredia DJ, Corrigan RD, Smith TK. Activity within specific enteric neurochemical subtypes is correlated with distinct patterns of gastrointestinal motility in the murine colon. Am J Physiol Gastrointest Liver Physiol. 2019 Aug 1;317(2):G210-G221. DOI: 10.1152/ ajpgi.00252.2018.
Smith-Edwards KM, Edwards BS, Wright CM, Schneider S, Meerschaert KA, Ejoh LL, et al. Sympathetic Input to Multiple Cell Types in Mouse and Human Colon Produces Region-Specific Responses. Gastroenterology. 2021 Mar;160(4):1208-1223.
Fung C, Berghe PV. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci. 2020 Nov;77(22):4505-4522. DOI: 10.1007/s00018-020-03543-6.
Spencer NJ, Kyloh MA, Travis L, Dodds KN. Identification of spinal afferent nerve endings in the colonic mucosa and submucosa that communicate directly with the spinal cord: The gut-brain axis. J Comp Neurol. 2020 Jul;528(10):1742-1753. DOI: 10.1002/cne.24854.
Humenick A, Chen BN, Wattchow DA, Zagorodnyuk VP, Dinning PG, Spencer NJ et al. Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterol Motil. 2021 Jan;33(1):e13964. doi: 10.1111/nmo.13964.
Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39-71.
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol. 2023 Aug 30;14:1239278. doi: 10.3389/fphys.2023.1239278.
Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J Gastroenterol. 2021 Dec 14;27(46):7909-7924. doi: 10.3748/wjg.v27.i46.7909.
Veress B, Peruzzi N, Eckermann M, Frohn J, Salditt T, Bech M, Ohlsson B. Structure of the myenteric plexus in normal and diseased human ileum analyzed by X-ray virtual histology slices. World J Gastroenterol. 2022 Aug 7;28(29):3994-4006. doi: 10.3748/wjg.v28.i29.3994.
Kirov TV, Atanasova DY, Lazarov NE. Neurochemical profile of the myenteric plexus in the rat colorectal region. Anat Rec (Hoboken). 2023 Sep;306(9):2292-2301. doi: 10.1002/ar.25019.
Shahrestani J, Das JM. Neuroanatomy, Auerbach Plexus. 2023 May 23. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.PMID: 31855386. https://www.ncbi.nlm.nih.gov/books/NBK551559.
Wood JD. Enteric Nervous System: Neuropathic Gastrointestinal Motility. Dig Dis Sci. 2016 Jul;61(7):1803-16. doi: 10.1007/s10620-016-4183-5.
Greenwood-Van Meerveld B, Johnson AC, Grundy D. Gastrointestinal Physiology and Function. Handb Exp Pharmacol. 2017;239:1-16. doi: 10.1007/164_2016_118.
Jones LA, Sun EW, Martin AM, Keating DJ. The ever-changing roles of serotonin. Int J Biochem Cell Biol. 2020 Aug;125:105776. doi: 10.1016/j.biocel.2020.105776.
Vaccaro R, Casini A, Severi C, Lamazza A, Pronio A, Palma R. Serotonin and Melatonin in Human Lower Gastrointestinal Tract. Diagnostics (Basel). 2023 Jan 5;13(2):204. doi: 10.3390/diagnostics13020204.
Koopman N, Katsavelis D, Hove AS, Brul S, de Jonge WJ, Seppen J. The Multifaceted Role of Serotonin in Intestinal Homeostasis. Int J Mol Sci. 2021 Aug 31;22(17):9487. DOI: 10.3390/ijms22179487.
Knutson KR, Whiteman ST, Alcaino C, Mercado-Perez A, Finholm I, Serlin HK et al. Intestinal enteroendocrine cells rely on ryanodine and IP(3) calcium store receptors for mechanotransduction. J Physiol. 2023 Jan;601(2):287-305. doi: 10.1113/JP283383.
Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol. 2022 Jul 21. doi: 10.1111/bph.15930.
Yaakob NS, Chinkwo KA, Chetty N, Coupar IM, Irving HR. Distribution of 5-HT3, 5-HT4, and 5-HT7 Receptors Along the Human Colon. J Neurogastroenterol Motil. 2015 Jul 30;21(3):361-9.
Narla VK, Prasad KM, Murthy JV. Time-dependent peristaltic analysis in a curved conduit: Application to chyme movement through intestine. Math Biosci. 2017 Nov;293:21-28.
Stasi C, Sadalla S, Stefano Milani S. The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis. Curr Drug Metab. 2019;20(8):646-655.
Zhang Y, Paterson WG. Characterization of the peristaltic reflex in murine distal colon. Can J Physiol Pharmacol. 2016 Feb;94(2):190-198. DOI: 10.1139/cjpp-2015-0086.
Gwynne RM, Bornstein JC. Luminal 5-HT(4) receptors-A successful target for prokinetic actions. Neurogastroenterol Motil. 2019 Oct;31(10):e13708. doi: 10.1111/nmo.13708.
Galligan JJ. Colonic 5-HT(4) receptors are targets for novel prokinetic drugs. Neurogastroenterol Motil. 2021 Apr;33(4):e14125. doi: 10.1111/nmo.14125.
Cash BD, Chey WD. The role of serotonergic agents in the treatment of patients with primary chronic constipation. Aliment Pharmacol Ther. 2005;22(11-12):1047-60.
Cellek S, Thangiah R, Jarvie EM. Synergy between 5-HT4 receptor activation and acetylcholinesterase inhibition in human colon and forestomach. Neurogastroenterol Motil. 2008;20(5):539-545.
Van Crombruggen K, Van Nassauw L, Timmermans JP, Lefebvre RA. Inhibitory purinergic P2 receptor characterisation in rat distal colon. Neuropharmacology. 2007 Aug;53(2):257-71. doi: 10.1016/j.neuropharm.2007.05.010.
de Campos NE, Marques-da-Silva C, Corrêa G, Castelo-Branco MT, de Souza HS, Coutinho-Silva R. Characterizing the presence and sensitivity of the P2X7 receptor in different compartments of the gut. J Innate Immun. 2012;4(5-6):529-41. doi: 10.1159/000336628.
Morrone FB, Vargas P, Rockenbach L, Scheffel TB. P2Y12 Purinergic Receptor and Brain Tumors: Implications on Glioma Microenvironment. Molecules. 2021 Oct 12;26(20):6146. doi: 10.3390/molecules26206146.
Cortier M, Boina-Ali R, Racoeur C, Paul C, Solary E, Jeannin JF, Bettaieb A. H89 enhances the sensitivity of cancer cells to glyceryl trinitrate through a purinergic receptor-dependent pathway. Oncotarget. 2015 Mar 30;6(9):6877-86. doi: 10.18632/oncotarget.3124.
Hibberd TJ, Travis L, Wiklendt L, Costa M, Brookes SJH, Hu H et al. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol. 2018 Jan 1;314(1):G53-G64. doi: 10.1152/ajpgi.00234.2017. Epub 2017 Sep 21.
Oláh G, Módis K, Törö G, Hellmich MR, Szczesny B, Szabo C. Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochem Pharmacol. 2018 Mar;149:186-204. doi: 10.1016/j.bcp.2017.10.011.
Beck K, Voussen B, Reigl A, Vincent AD, Parsons SP, Huizinga JD, Friebe A. Cell-specific effects of nitric oxide on the efficiency and frequency of long distance contractions in murine colon. Neurogastroenterol Motil. 2019 Jun;31(6):e13589. doi: 10.1111/nmo.13589.
Durnin L, Lees A, Manzoor S, Sasse KC, Sanders KM, Mutafova-Yambolieva VN. Loss of nitric oxide-mediated inhibition of purine neurotransmitter release in the colon in the absence of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol. 2017 Nov 1;313(5):G419-G433. doi: 10.1152/ajpgi.00045.2017.
Brinkman DJ, Ten Hove AS, Vervoordeldonk MJ, Luyer MD, de Jonge WJ. Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells. 2019 Jul 2;8(7):670.
Rasmusson AM. The gut peptide neuropeptide Y and post-traumatic stress disorder. Curr Opin Endocrinol Diabetes Obes. 2017 Feb;24(1):3-8. doi: 10.1097/MED.0000000000000301.
Priem EK, De Maeyer JH, Vandewoestyne M. Predominant mucosal expression of 5-HT4 (+h) receptor splice variants in pig stomach and colon. World J. Gastroenterol. 2013;19(24):3747-60.
Patel M, Valaiyaduppu Subas S, Ghani MR, Busa V, Dardeir A, Marudhai S, Cancarevic I. Role of Substance P in the Pathophysiology of Inflammatory Bowel Disease and Its Correlation With the Degree of Inflammation. Cureus. 2020 Oct 18;12(10):e11027. doi: 10.7759/cureus.11027.
Mazzoni M, Cabanillas L, Costanzini A, Caremoli F, Million M, Larauche M et al. Distribution, quantification, and characterization of substance P enteric neurons in the submucosal and myenteric plexuses of the porcine colon. Cell Tissue Res. 2024 Jan;395(1):39-51. doi: 10.1007/s00441-023-03842-x.
Yan Y, Ramanan D, Rozenberg M, McGovern K, Rastelli D, Vijaykumar B, et al. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut. Immunity. 2021 Mar 9;54(3):499-513. DOI: 10.1016/j. immuni.2021.02.002.
Chen Y, Pan R, Mei L, Tian P, Wang L, Zhao J, Chen W, Wang G. Colon-Targeted Delivery of Indole Acetic Acid Helps Regulate Gut Motility by Activating the AHR Signaling Pathway. Nutrients. 2023 Oct 8;15(19):4282. doi: 10.3390/nu15194282.
Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR et al. Intestinal microbiota shapes
gut physiology and regulates enteric neurons and glia. Microbiome. 2021 Oct 26;9(1):210. doi: 10.1186/s40168-021-01165-z.