The relationship of fatigue-induced changes of human soleus Hoffmann reflex and level of adaptation to physical exercise
Main Article Content
Abstract
Introduction. The effect of triceps muscle of calf (m.m. gastrocnemius-soleus) fatigue on the soleus muscle H (Hoffmann) reflex amplitude was investigated in both heathy untrained people and highly skilled athletes, 18-34 years of age. It is known that under the influence of permanent physical training the morphology and function of athlete’s organism change in order to extend its functional possibilities. We supposed that neuromuscular system of trained and untrained persons would respond to fatigue differently. One of the informative methods for quantitative analysis of the functional state of neuromuscular system could be tests with use of stimulation electromyography in which the parameters of the H-reflex are measured.
Purpose. The purpose of our work was to investigate in detail human soleus H-reflex changes after prolonged voluntary contraction of triceps muscle of calf, which caused the fatigue of soleus muscle; and also to estimate features of soleus H-reflex inhibition in two groups of people with the different level of adaptation to physical exercise.
Methods. Fatigue was caused by sustained (6-9 min long) voluntary static contraction of triceps muscle of calf with effort egual to 75% of the maximal voluntary contraction. During the test, the person was sitting and pressing on fixed pedal with the foot, trying to realize sole flexion. The method of H-reflex of soleus muscle was used. Registration of electromyographic signals and tibial nerve stimulation were performed using neurodiagnostic complex (Nicolet Viking Select, USA-Germany).
Results. It was found that in the group of untrained people an amplitude of soleus H-reflex was significantly reduced, egualing immediately after fatigue period of about 60% of initial value. Then H-reflex amplitude subsequently recovered and in 2-3 minutes attained approximately 90% of the initial amplitude. This was followed by the period of slow recovery of the reflex, to 96-97% of its initial value in 30 minutes after the fatigue period. At the same time, in a group of trained people (athletes) H-reflex inhibition was notably less evident. H-reflex amplitude was reduced after the fatigue period to 85% of initial value with rapid recovery to 98% of initial value in 1.5 minutes.
Originality. In this paper for the first time features of human soleus H-reflex inhibition and recovering after prolonged fatiguing voluntary contraction in two groups of persons with the different level of adaptation to physical exercise were investigated.
Conclusion. It was suggested that the H-reflex inhibition occurred due to the activation of the groups III and IV afferent nerves under the influence of metabolic changes (such as accumulation of lactic acid) in the muscle during fatiguing contraction. Such activation could cause the increase of presynaptic inhibition intensity from Ia afferents to motoneurons. The more prolonged effects of the inhibition (for the period of tens of minutes) might be associated with the direct influence of the fatigue-induced biochemical shifts in the muscle. A clearly supressed amplitude reduction of the H-reflex in the group of trained persons might be the evidence of high velocity of metabolites utilization, which is appropriate for athletes during the physical exercise.
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
AGREEMENT ABOUT TRANSMISSION OF COPYRIGHT
I, the author of the article / We, the authors of the manuscript _______________________________________________________________________
in case of its acceptance for publication, we transfer the following rights to the founders and editorial boards of the scientific publication "Cherkasy University Bulletin: Biological Sciences Series":
1. Publication of this article in Ukrainian (English) and distribution of its printed version.
2. Dissemination of the electronic version of the article through any electronic means (placing on the official journal web site, in electronic databases, repositories, etc.). At the same time we reserve the right without consent of the editorial board and the founders:
1. Use the materials of the article in whole or in part for educational purposes.
2. To use the materials of the article in whole or in part for writing your own theses.
3. Use article materials to prepare Summarys, conference reports, and oral presentations.
4. Post electronic copies of the article (including the final electronic version downloaded from the journal's official website) to:
a. personal web-pecypcax of all authors (web sites, web pages, blogs, etc.);
b. web-pecypcax of the institutions where the authors work (including electronic institutional repositories);
with. non-profit, open-source web-pecypcax (such as arXiv.org).
With this agreement, we also certify that the submitted manuscript meets the following criteria:
1. Does not contain calls for violence, incitement of racial or ethnic enmity, which are disturbing, threatening, shameful, libelous, cruel, indecent, vulgar, etc.
2. Does not infringe the copyrights and intellectual property rights of others or organizations; contains all the references to the cited authors and / or publications envisaged by applicable copyright law, as well as the results and facts used in the article by other authors or organizations.
3. It has not been previously published in other publishers and has not been published in other publications.
4. Does not include materials that are not subject to publication in the open press, in accordance with applicable law.
____________________ ___________________
First name, Last name, signature of the author
"___" __________ 20__
References
Bigland-Ritchie, B., & Woods, J.J. (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve, 7, 691-699.
Gandevia, S.C. (2001). Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiological Reviews, 81, 4, 1725-1789.
Badalian, L.O., & Skvortsov, I.A. (1986). Clinical electromyography. М: Meditsina (in Russ.).
Komantsev V.N. (2006). Methodical bases of clinical electromyography. Guidance for doctors. Saint Petersburg (in Russ.).
Garland, S.J., & McComas, A.J. (1990). Reflex inhibition of human soleus muscle during fatigue. J. Physiol., 429, 17-27.
Avela , J., Kyrolainen, H., & Komi, P.V. (2001). Neuromuscular changes after long-lasting mechanically and electrically elicited fatigue. Eur. J. Appl. Physiol., 85, 3-4, 317-325.
Duchateau, J., Balestra, C., Carpentier, A., et al. (2002). Reflex regulation during sustained and intermittent submaximal contractions in humans. J. Physiol., 541, 3, 959-967.
Kozhina G.V., & Person R.S. (1993). Monosynaptic reflex (H-reflex) arc state in human during voluntary muscle contraction. Nejrofisiologia (Neurophysiology), 1, 5, 365-371 (in Russ.).
Wilmor J., & Kostill D. (2001). Sports physiology. К.: Olimpijskaia literatura (in Russ.).
Kostyukov, A.I., Bugaychenko, L.A., Kalezic, I., et al. (2005). Effects in feline gastrocnemius-soleus motoneurones induced by muscle fatigue. Exp. Brain Res., 163, 3, 284-294.
Kolosova E.V., & Slivko E.I. (2006). Fatigue-induced modulation of human soleus Hoffmann reflex // Nejrofisiologia (Neurophysiology), 38, 5/6, 426-431.
Beliveau, J., Helal, J.N., Gaiilard, E., et al. (1991). EMG spectral shift- and 31P-NMR-determined intracellular pH in fatigued human biceps brachii muscle. Neurology, 41, 1998-2001.
Vestergaard-Poulsen, P., Thomsen, C., Sinkjaer, T., et al. (1992). Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy with application to muscle fatigue. Electroencephalography and Clinical Neurophysiology, 85, 402-411.
Dercherchi, P., & Dousset, E. (2003). Role of metabosensitive afferent fibers in neuromuscular adaptive mechanisms.
Can. J. Neurol. Sci., 30 , 2, 91–97.
Kaufman, M.P., Longhurst, J.C., Rybicki, K.J., et al. (1983). Effect of static muscular contraction on impulse activity of groups III and IV afferents in cats. Journal of Applied Physiology, 55, 105-112.
Sinoway, L.I., Hill, J.M., Pickar, J.G., et al. (1993). Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. Journal of Neurophysiology, 69, 1053-1059.
Darques, J.L., Decherchi, P., & Jammes, Y. (1998). Mechanisms of fatigue-induced activation of group IV muscle afferents: the roles played by lactic acid and inflammatory mediators. Neurosci Lett., 27, 257 (2), 109–112.
Decherchi, P., Darques, J.L., & Y.J.Jammes (1998). Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically-induced fatigue. Peripher.Nerv.Syst. , 3, 4, 267-276.
Zaporozhanov V.А. (1988). Control in sport training. Kiev: Zdorovya (in Russ.).