Interhemispheric transfer of information in performance of complex Stroop test involving spatial properties by right- and left-handers
Main Article Content
Abstract
Introduction. Interhemispheric interaction is important for the integration of perception and motor control of two body parts. Over the past 20 years behavioral and electrophysiological studies have shown that callosal transfer of a number of behavioral and cognitive processes is asymmetric. The functional significance and neural basis of this asymmetry is still investigated. Most movements people performed with the assistance of both hands, and coordination/synchronization of their interaction is very important. The mechanisms of this interaction are still scarcely explored.Purpose. The aim of research was to study the bimanual reactions in performance of complex Stroop test involving spatial properties.
Methods. The study involved 64 students of educational-scientific center "Institute of Biology and Medicine" of both genders – 39 right-handed and 25 left-handed. Stimuli (the word "Green" or "Red" written in relevant or irrelevant color) were exposed on the right or left from the center of the screen. In the case of congruence the word and its semantic meaning should press one button by the ipsilateral hand ("yes"), while in the case of mismatch – the other button by the contralateral one ("no").
Results. Latent period (LP) of reactions and mistakes quantity (MQ) in right-handers and left-handers are the same. The answer "yes" is faster than answers "no" for both right and left hands either of right- or left-handers. Comparison LP of similar responses of both hands showed that answer "yes" is faster for the right hand and answer "no" – for the left one for both right- and left-handers, so that the difference in LP between "yes" and "no" for the left hand is shorter than for the right one. This points out to easily transfer of information from the left hemisphere to the right one than in the opposite direction. The transfer of information from one hemisphere to the other (the difference between "yes" for one hand and "no" for the other) is different for two directions only by callosal delay time (3.55 ms), indicating on interhemispheric synchronization mechanism. With answers "yes" MQ is less than with answers "no." Lesser MQ of answers "no" for right-handers occurs when transferring information from the left to the right hemisphere, while for left-handers – on the contrary – from the right hemisphere to the left one.
Conclusion. The results point out that the motor metacontrol for both right- and left-handers is situated in the left hemisphere, while metacontrol of errors for right-handers is in the left hemisphere and for left-handers - in the right one.
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
AGREEMENT ABOUT TRANSMISSION OF COPYRIGHT
I, the author of the article / We, the authors of the manuscript _______________________________________________________________________
in case of its acceptance for publication, we transfer the following rights to the founders and editorial boards of the scientific publication "Cherkasy University Bulletin: Biological Sciences Series":
1. Publication of this article in Ukrainian (English) and distribution of its printed version.
2. Dissemination of the electronic version of the article through any electronic means (placing on the official journal web site, in electronic databases, repositories, etc.). At the same time we reserve the right without consent of the editorial board and the founders:
1. Use the materials of the article in whole or in part for educational purposes.
2. To use the materials of the article in whole or in part for writing your own theses.
3. Use article materials to prepare Summarys, conference reports, and oral presentations.
4. Post electronic copies of the article (including the final electronic version downloaded from the journal's official website) to:
a. personal web-pecypcax of all authors (web sites, web pages, blogs, etc.);
b. web-pecypcax of the institutions where the authors work (including electronic institutional repositories);
with. non-profit, open-source web-pecypcax (such as arXiv.org).
With this agreement, we also certify that the submitted manuscript meets the following criteria:
1. Does not contain calls for violence, incitement of racial or ethnic enmity, which are disturbing, threatening, shameful, libelous, cruel, indecent, vulgar, etc.
2. Does not infringe the copyrights and intellectual property rights of others or organizations; contains all the references to the cited authors and / or publications envisaged by applicable copyright law, as well as the results and facts used in the article by other authors or organizations.
3. It has not been previously published in other publishers and has not been published in other publications.
4. Does not include materials that are not subject to publication in the open press, in accordance with applicable law.
____________________ ___________________
First name, Last name, signature of the author
"___" __________ 20__
References
Pellicano A., Barna V., Nicoletti R., Rubichi S., Marzi C. A. (2013). Interhemispheric vs. stimulus-response spatial compatibility effects in bimanual reaction times to lateralized visual stimuli. Front. Psychol., 4, 362. https://doi: 10.3389/fpsyg.2013.00362.
Marzi C. A. (2010). Asymmetry of interhemispheric communication. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 3, 433–438.
Gut M., Urbanik A, Forsberg L, Binder M. at all. (2007). Brain correlates of right-handedness. Acta Neurobiol Exp (Wars), 67, 1,43-51.
Grefkes C., Eickhoff S.B., Nowak D.A., Dafotakis M, Fink G.R. (2008). Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage, 41, 4, 1382-94.
Boulinguez Ph., Velayand J., Nougier Vincent (2001). Manual asymmetries in reaching movement control. I: study of left-handers. Cortex, 37, 123-138.
Lavrysen A., Heremans E., Peeters R. all. (2012). Hemispheric asymmetries in goal-directed hand movements are independent of hand preference. NeuroImage, 62, 1815–1824.
MacLeod C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.
Kutsenko T., Filimonova N., Kostenko S. (2007). Assessment of functional brain asymmetry by latent periods of human sensorimotor reactions. Visnyk Kyivskogo universytetu, Problemy reguliatsii fiziologichnykh funktsii (The Bulletin of Kyiv University, Problems of regulation of physiological functions),12, 14-16.
Kostenko, S.S., & Loktieva R.K. (2000). Assessment of first and second signal systems activity in humans. Visnyk Kyivskogo universytetu, Biologiia (The Bulletin of Kyiv University, Biology), 32, 31-34.
Kosslyn S.M. (1987). Seeing and imagining in the cerebral hemispheres: A computational approach. Psychol Rev., 94, 2, 148–175.
Derakhshan I. (2008). Bimanual simultaneous movements and hemispheric dominance: Timing of events reveals hard-wired circuitry for action, speech, and imagination. Psychology Research and Behavior Management, 1, 1–9.