Functional factors providing conditions for mass transfer of respiratory gases during muscular activity in the mountains

Main Article Content

Михайло Філіппов
Володимир Ільїн
Володимир Портниченко

Abstract

Abstract. For the physiology of motor activity and sports, the theory of hypoxic states, it is important to clarify the mechanisms that ensure the process of mass transfer and O2 utilization during muscle activity of varying intensity under conditions of reduced RO2 in the inhaled air, and the peculiarities of meeting the increased O2 demand of the body. A certain effectiveness of hypoxic training for improving functional capabilities of athletes and sports results both in sports related to the manifestation of endurance of athletes and in others has been proven in numerous works of researchers working in the field of sports physiology.


Objective. To analyze (on the basis of the literature review and own observations) the influence of changes in the body of sportsmen in the mountains on the conditions of providing mass transfer of respiratory gases during muscular activity of different intensity.


Methods. We analyzed the special scientific and methodological literature on the influence of the lack of O2 in the inhaled air on the functioning of the external respiratory system, cardiovascular system, oxygen transport function of blood, tissue respiration, homeostatic characteristics, etc.


Results The main adaptive reactions of these systems in the mountains are considered, which ensure the supply of O2 from the environment to the lungs, its combination with hemoglobin, its transportation with blood to the working organs, its release by hemoglobin and movement to the muscles, the conditions of O2 consumption, the formation of CO2 and its excretion from the body, and other processes. It can be argued that the regulation of oxygen supply to the body during exercise in the process of adaptation to hypoxia occurs both at the systemic level and at the tissue level: the entire respiratory system is economized, and the mechanisms for regulating the process of mass transfer of respiratory gases are expanded.


Thus, during strenuous muscle activity in the mountains, as a result of reduced RO2 in the inhaled air, there are changes in the functioning of almost all physiological systems involved in ensuring the process of mass transfer of respiratory gases in the body. 

Article Details

Section
Статті

References

Ільїн B. М., Філіппов М.М., Клименко Г.В. Перебудови в системі дихання спортсменів при адаптації до середньогір’я // Science and Education a New Dimension. Natura land Technical Sciences. Budapest, 2019. VI(22), Issue: 193. Р. 69-72. https://doi.org/10.31174/SEND-NT2019-193VII23-17.

Портниченко В., Ільїн В., Філіппов М., Коваль С. Стан регуляторних процесів організмі бігунів на середні дистанції після тренувань в умовах середньогір’я. // Теорія і методика фізичного виховання і спорту. 2021;1;61-66. https://doi.org/10.32652/tmfvs.2021.1.61-66.

Сосновский В. В. Пастухова В. А., Філіппов М. М., Ільїн В. М. Аналіз спектрів потужності варіабельності серцевого ритму у спортсменів під час початкової адаптації до умов гірської гіпоксії. // Science and education a new dimension. Natural and Technical Sciences. - VI(22), Issue: 186, 2018 Dec.-Р. 42-45. https://doi.org/10.31174/SEND-NT2018-186VI22.

Філіппов М. М., Ільїн В. М., Портниченко В. І., Лук’янцева Г. В. Cистемні зміни в організмі спортсменів, які впливають на масоперенесення респіраторних газів при м’язовій діяльності в горах. //Вісник проблем біології і медицини, 2019. Вип. 2, том 2 (151). С. 64-71. https://doi.org/10.29254/2077-4214-2019-2-2-151-64-71.13

Azad, P.; Stobdan, T.; Zhou, D.; Hartley, I.; Akbari, A.; Bafna, V.; Haddad, G.G. High-altitude adaptation in humans: From genomics to integrative physiology.// J. Mol. Med. 2017, 95, 1269–1282. https://doi.org/10.1007/s00109-017-1584-7.

Basak N., Norboo T., Mustak M.S., Thangaraj K. Heterogeneity in Hematological Parameters of High and Low Altitude Tibetan Populations. J. Blood Med. 2021, 12, 287–298. https://doi.org/10.2147/jbm.S294564.

Beretta E., Lanfranconi F., Grasso G.S., Bartesaghi M., Alemayehu H.K., Pratali L. еt al. Air blood barrier phenotype correlates with alveolo-capillary O2 equilibration in hypobaric hypoxia //Respir Physiol Neurobiol. 2017 Dec;246:53-58. doi: 10.1016/j.resp.2017.08.006.

Beretta E., Grasso G.S., Forcaia,G., Sancini, G., Miserocchi, G. Differences in alveolo-capillary equilibration in healthy subjects on facing O2 demand. Sci. Rep. 2019, 9, 16693. https://doi.org/10.1038/s41598-019-52679-4.

Burtscher J., Mallet R.T., Pialoux V., Millet G.P., Burtscher M. Adaptive Responses to Hypoxia and/or Hyperoxia in Humans. Antioxid. Redox Signal. 2022, 37, 887–912. https://doi.org/10.1089/ars.2021.028.

Dominelli P.B., Wiggins C.C., Roy T.K.. Secomb T.W., Curr, T.B., Joyner, M.J. The Oxygen Cascade During Exercise in Health and Disease. Mayo Clin. Proc. 2021, 96, 1017–1032. https://doi.org/10.1016/j.mayocp.2020.0 6.063.

Fitzgerald R.S., Rocher A. Physiology and Pathophysiology of Oxygen Sensitivity. Antioxidants. 2021, 10, 1114. https://doi.org/10.3390/ antiox10071114.2.

Gao L., Ortega-Sáenz P., Moreno-Domínguez A., López-Barneo J. Mitochondrial Redox Signaling in O(2)-Sensing Chemoreceptor Cells. Antioxid. Redox Signal. 2022, 37, 274–289. https://doi.org/10.1089/ars. 2021.0255.

Lemieux P., Birot O. Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story. Front. Physiol. 2021, 12, 735557. https://doi.org/10.3389/fphys.2021.735557.

Leonard E.M., Salman S., Nurse, C.A. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia. Front. Physiol. 2018, 9, 225. https://doi.org/10.3389/fphys.2018.00225.

Li Y., Wang,Y. Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review. Brain Sci. 2022, 12, 808. https://doi.org/10.3390/brainsci12060808.

López-Barneo J., Ortega-Sáenz P. Mitochondrial acute oxygen sensing and signaling. Crit. Rev. Biochem. Mol. Biol. 2022, 57, 205–225. https://doi.org/10.1080/10409238.2021.

Marquis A.D., Jezek F., Pinsky D.J., Beard D.A. Hypoxic pulmonary vasoconstriction as a regulator of alveolar-capillary oxygen flux: A computational model of ventilation-perfusion matching.// PLoS Comput. Biol. 2021, 17, e1008861. https://doi.org/10.1371/journal.pcbi.1008861.

Murray A.J., Montgomery H.E., Feelisc M., Grocott M.P.W., Martin D.S. Metabolic adjustment to high-altitude hypoxia: From genetic signals to physiological implications. //Biochem. Soc. Trans. 2018, 46, 599–607. https://doi.org/10.1042/BST20170502.

Jacobs R.A., Lundby A.K., Fenk S., Gehrig S., Siebenmann C., Fluck D., Kirk,N,. Hilty M.P., Lundby C. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J. Physiol. 2016, 594, 1151–1166. https://doi.org/10.1113/ expphysiol. 2012.066092.

Ora J., Rogliani P., Dauri M., O’Donnell D. Happy hypoxemia, or blunted ventilation? Respir. Res. 2021, 22, 4. https://doi.org/10.1186/s12931-020-01604-9.

Pena E., El Alam S., Siques P., Brito, J. Oxidative Stress and Diseases Associated with High-Altitude Exposure. Antioxidants. 2022, 11, 267. https://doi.org/10.3390/antiox11020267.

Pilotto, A.M., Adami A., Mazzolari R., Brocca L., Crea E., Zuccarelli L, Pellegrino M.A., Bottinelli R., Grassi B., Rossiter H.B. et al. Near-infrared spectroscopy estimation of combined skeletal muscle oxidative capacity and O(2) diffusion capacity in humans. J. Physiol. 2022, 600, 4153–4168. https://doi.org/10.1113/jp283267.

Poole D.C., Kano Y., Koga S., Musch T.I., August Krogh: Muscle capillary function and oxygen delivery. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2021, 253, 110852. https://doi.org/10.1016/ j.cbpa.2020.110852.

Poole D.C., Musch T.I., Colbu, T.D. Oxygen flux from capillary to mitochondria: Integration of contemporary discoveries. Eur. J. Appl. Physiol. 2022, 122, 7–28. https://doi.org/10.1007/s00421-021-04854-7.

Richalet J.P., Hermand E. Modeling the oxygen transport to the myocardium at maximal exercise at high altitude. //Physiol. Rep. 2022, 10, e15262. https://doi.org/10.14814/phy2.15262.

Tremblay J.C., Ainslie P.N. Global and country-level estimates of human population at high altitude. Proc. Natl. Acad. Sci. USA. 2021. https://doi.org/10.1073/pnas.2102463118.

Samaja М., Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as aTool to Understand the (Mal)adaptation to Hypoxia. //Int. J. Mol. Sci. 2023, 24, 3670. https://doi.org/10.3390/ijms24043670.

Siebenmann C., Lundby C. Regulation of cardiac output in hypoxia. // Scand J. Med. Sci. Sport 2015, 25 (Suppl. 4), 53–59. https://doi.org/10.1111/sms.12619.

Siebenmann C. CK, Oberholzer L., Fisher J.P., Hilsted L…M, Rasmussen P. еt al. Hypoxia-induced vagal withdrawal is independent of the hypoxic ventilatory response in men. // J. Appl. Physiol. 2019 Jan. 1; 126(1):124-131. doi: 10.1152/japplphysiol.00701.2018.

.Sinex J. A., & Chapman R. F. Hypoxic training methods for improving endurance exercise performance. //Journal of Sport and Health Science, 2015, 4(4), 325-332. doi:10.1016/j.jshs.2015.07.005.

Sosnovsky V.V., Pastukhova V.A., Pornichenko V.I., Filippov M.M., Ilyin V.M. Effects of medium-height mountain training on the functional abilities and physical fitness of mid-distance runners. // Journal of Physical Education and Sport ® (JPES), 2019, Vol.19 (4), Art 360, pp. 2379 - 2383, ISSN:2247-806X;p-ISSN:2247–8051;ISSN-L=2247-8051c JPES.

Stembridge M., Ainslie P.N., Shave R. Mechanisms underlying reductions in stroke volume at rest and during exercise at high altitude. Eur. J. Sport. Sci. 2016, 16, 577–584. https://doi.org/ 10.1080/17461391.2015.1071876.

Theunissen S., Balestra C., Bolognési S., Borgers G., Vissenaeken D., Obeid G., Germonpré P., Honoré P.M., De Bel D. Effects of Acute Hypobaric Hypoxia Exposure on Cardiovascular Function in Unacclimatized Healthy Subjects: A “Rapid Ascent” Hypobaric Chamber Study. Int. J. Env. Res. PublicHealth 2022, 19, 5394. https://doi.org/10.3390/ijerph19095394

Wagner P.D. Reduced maximal cardiac output at altitude--mechanisms and significance. Respir. Physiol. 2000, 120, 1–11. https://doi.org/10.1016/s0034-5687(99)00101-2.

Simonso T.S., Bermudez D., León-Velarde F. High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology 2022, 37, 175–186. https://doi.org/10.1152/ physiol.00029.2021.

Vizcardo-Galindo G., Leon-Velarde F., Villafuert F.C. High-Altitude Hypoxia Decreases Plasma Erythropoietin Soluble Receptor Concentration in Lowlanders. High Alt. Med. Biol. 2020, 21, 92–98. https://doi.org/ 10.1089/ham.2019.0118.

West J. B. Oxygen Conditioning: A New Technique for Improving Living and Working at High Altitude. Physiology 2016, 31,216–222. https://doi.org/10.1152/physiol.00057.2015.

Wiggins C.C., Constantini K., Paris H.L., Mickleborough T.D., Chapman R.F. Ischemic Preconditioning, O2 Kinetics, and Performance in Normoxia and Hypoxia. //Med Sci Sports Exerc. 2019 May;51(5):900-911. doi: 10.1249/MSS.0000000000001882.

Most read articles by the same author(s)