uk Silver Nanocomposite Based on Synthetic Humic Substances as Highly Efficient Plant Growth Stimulants

Main Article Content

Valentina Anatolyivna Lytvyn
Alyona Volodymyrivna Zaporozhets
Inna Oleksandrivna Ozivska


Nanotechnology have positive impact in improving many sectors of economy
including agriculture. Silver nanoparticles (AgNPs) have been implicated nowadays to enhance seed
germination, plant growth, improvement of photosynthetic quantum efficiency and as antimicrobial
agents to manage plant diseases. Despite the known growth-stimulating activity of preparations of
humic substances and silver nanoparticles, there is currently no information on the effect on growth
processes of composites containing silver nanoparticles encapsulated in macromolecules from
synthetic humic substances. It is expected that such combined nanopreparations have enhanced and
complementary properties of a metal core and a shell of humic synthetic substances.

Article Details

Author Biographies

Valentina Anatolyivna Lytvyn , Cherkasy National University named after Bohdan Khmelnytskyi

candidate of chemical sciences, associate professor Cherkasy National University named after B. Khmelnytskyi

Alyona Volodymyrivna Zaporozhets , Cherkasy National University named after Bohdan Khmelnytskyi

Junior Research Fellow Cherkasy National University named after B. Khmelnytskyi

Inna Oleksandrivna Ozivska , Cherkasy National University named after Bohdan Khmelnytskyi

Junior Research Fellow Cherkasy National University named after B. Khmelnytskyi


Mittal D., Kaur G., Singh P., Yadav K., Ali S.A. Nanoparticle-Based Sustainable Agriculture and Food Science:

Recent Advances and Future Outlook. Front. Nanotechnol. 2020. Vol. 2. P. 579954.

Usman M., Farooq M., Wakeel A., Nawaz A., Cheema S. A., Rehman H., et al. Nanotechnology in agriculture:

current status, challenges and future opportunities. Sci. Total. Environ. 2020. Vol. 721. P. 137778.

Hojjat S. S., Kamyab M. The effect of silver nanoparticle on Fenugreek seed germination under salinity

levels. Russian. Agricult. Sci. 2017. Vol. 43. P. 61–65.

Iqbal M., Raja N. I., Hussain M., Ejaz M., Yasmeen F. Effect of silver nanoparticles on growth of wheat under

heat stress. J. Sci. Technol. Transac. A Sci. 2019. Vol. 43. P. 387–395.

Nath J., Dror I., Landa P., Vanek T., Kaplan-Ashiri I., Berkowitz B. Synthesis and characterization of

isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants. Environ. Pollut.

Vol. 242. P. 1827–1837.

Jiang H., Li M., Chang F.Y., Li W., Yin L.V. Physiological analysis of silver nanoparticles and AgNO3 toxicity

to Spirodela polyrhiza. Environ Toxicol Chem. 2012. Vol. 31 (8). P. 1880–1886.

Bewley J.D., Black M. Seeds. Springer (2nd ed.), Boston, 1994. P. 1-33.

Barrena R., Casals E., Colon J., Font X., Sanchez A., Puntes V. Evaluation of the ecotoxicity of model

nanoparticles. Chemosphere. 2009. Vol. 75. P. 850–857.

Shelar G.B., Chavan A.M. Myco-synthesis of silver nanoparticles from Trichoderma harzianum and its impact

on germination status of oil seed. Biolife. 2015. Vol. 3. P. 109–113.

Sharma P., Bhatt D., Zaidi M.G., Saradhi P.P., Khanna P.K., Arora S. Silver nanoparticle-mediated enhancement

in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 2012. Vol. 167. P. 2225–2233.

Kaveh R., Li Y.S., Ranjbar S., Tehrani R., Brueck C.L., Van Aken B. Changes in Arabidopsis thaliana gene

expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 2013. Vol. 47. P. 10637–

Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. Morphological and proteomic

responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One. 2013. Vol. 8. P. 6875.

Hatami M., Ghorbanpour M. Effect of nanosilver on physiological performance of pelargonium plants exposed

to dark storage. J. Hort. Res. 2013. Vol. 21. P. 15–20.

Lu C., Zhang C., Wen J., Wu G., Tao M. Research of the effect of nanometer materials on germination and

growth enhancement of Glycine max and its mechanism. Soybean Sci. 2002. Vol. 21. P. 168–171.

Anisimov M.M., Skriptsova A.V., Chaikina E.L., Klykov A.G. Effect of water extracts of seaweeds on the

growth of seedling roots of buckwheat. Int. J. Res. Rev. Appl. Sci. 2013. Vol. 16. №2. P. 282–287.

Zhigacheva I.V., Burlakova E.B., Generozova I.P., Shugaev A.G., Fattahov S.G. Ultra-low doses of melafen

affect the energy of mitochondria. J. Biophys. Structural Biology. 2010. Vol. 2. № 1. P. 001–008.

Almutairi Z.M., Alharbi A. Effect of Silver Nanoparticles on seed germination of crop plants. Int. J. Biol.,

Biomol., Agricult., Food Biotechnol. Engineering. 2015. Vol. 9. № 6. P. 551–555.

Yin L., Colman B.P., McGill B.M., Wright J.P., Bernhardt E.S. Effects of silver nanoparticle exposure on

germination and early growth of eleven wetland plants. PLoS One. 2012. Vol. 7. № 10. P. e47674.

Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L. Morphological and proteomic responses of

Eruca sativa exposed to silver silver nanoparticles or silver nitrate. PLoS One. 2013. Vol. 8. № 7. P. e6875.

Tymoszuk A. Silver Nanoparticles Effects on In Vitro Germination, Growth, and Biochemical Activity of

Tomato, Radish, and Kale Seedlings. Materials. 2021. Vol. 14. P. 5340.

Geisler-Lee J., Wang Q., Yao Y., Zhang W., Geisler M., Li K. Phytotoxicity, accumulation and transport of

silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 2013. V. 7. № 3. P. 323–337.

Rajput V., Minkina T., Mazarji M., Shende S., Sushkova S., Mandzhieva S., Burachevskaya M., Chaplygin

V., Singh A., Jatav H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health.

Annals of agricultural science. 2020. Vol. 65. №2. P. 137-143.

Litvin V.A., Derij S.I., Plakhotniuk L.M., Njoh R.A. Effects of humic substances on seed germination of wheat

under the influence of heavy metal. Cherkasy University Bulletin: Biological Sciences series. 2020. Vol. 1. P.


Canellas L. P., Olivares F. L. Physiological responses to humic substances as plant growth promoter. Chem. biol.

technol. agric. 2014. Vol. 1. No 3. P. 11.

Litvin V.A., Njoh R.A. Quercetin as a precursor in the synthesis of analogues of fulvicacids and their

antibacterial properties. Voprosy khimii i khimicheskoi tekhnologii. 2021. No. 2. P. 56-64.

Theivasanthi, T., Alagar, M. X-Ray Diffraction Studies of Copper Nanopowder. Arch. Phys. Res. 2010. Vol. 1

(2). P. 112-117.

Dolmaa G., Bаyrаа B., Uranrserseg E., Aleksandrova G.P., Lesnichaya M.B., Ganzaya G., Sukhov B.G., Regdel

D., Trofimov B.A. Influence of ultra-low doses of some biologically active substances on the germination of

wheat seeds. Pros. Mong. Acad. Scien. 2015. Vol. 1. P. 77–89.

Litvin V.A., Minaev B.F. Spectroscopy study of silver nanoparticles fabrication using synthetic humic

substances and their antimicrobial activity. Spectrochim. Acta, Part A. 2013. Vol. 108. Р. 115-122.

Anisimov M.M., Chaikina E.L., Afiyatullov S.S., Zhuravleva O.I., Klykov A.G., Kraskovskaja N.A., Aminin

D.L. Decumbenones A–C from marine fungus Aspergillus sulphureus as stimulators of the initial stages of

development of agricultural plants. Agricultural Sci. 2012. Vol. 3. № 8. P. 1019–1022.

Lei Z., Mingyu S., Xiao W., Chao L., Chunxiang Q., Liang C. Antioxidant stress is promoted by nano-anatase in

spinach chloroplasts under UV-B radiation. Biol. Trace Elem. Res. 2008. Vol. 121. P. 69–79.

Zheng L., Hong F., Lu S., Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach.

Biol. Trace. Element. Res. 2005. Vol. 104. № 1. P. 82–93.

Farghaly F.A., Nafady N.A. Green synthesis of silver nanoparticles using leaf extract of Rosmarinus officinalis

and its effect on tomato and wheat plants. J. Agricultural Sci. 2015. Vol. 7. № 11. P. 1916–1923.