РЕАКТИВНІ ТА АДАПТИВНІ ЗМІНИ СЕРЦЕВО-СУДИННОЇ СИСТЕМИ ЧОЛОВІКІВ У ВІДПОВІДЬ НА РІЗНІ ВИДИ ФІЗИЧНИХ ВПРАВ: ФІЗІОЛОГІЧНИЙ ТА ТРЕНУВАЛЬНИЙ КОНТЕКСТ

##plugins.themes.bootstrap3.article.main##

Yaroslav Soynikov
Halyna Lukyantseva

Анотація

Постановка проблеми. Гемодинамічні зміни, викликані фізичними вправами, є ключовим механізмом підтримки гомеостазу під час м'язової активності. Однак реактивні та адаптивні серцево-судинні реакції суттєво варіюються залежно від віку, статусу тренування та характеру фізичного навантаження. Існуючі дані, що описують, як аеробні, анаеробні, змішані та функціональні методи тренувань впливають на центральну гемодинаміку, вегетативну регуляцію та структурно-функціональні характеристики серця в різні вікові періоди, залишаються недостатньо систематизованими. Це обмежує розробку індивідуалізованих тренувальних програм, заснованих на віково-специфічних фізіологічних закономірностях.


Мета. Визначити вікові особливості реактивних та адаптивних змін серцево-судинної системи чоловіків у відповідь на фізичні вправи різної метаболічної спрямованості та охарактеризувати механізми, що лежать в основі гемодинамічних реакцій та адаптацій, викликаних тренуванням.


Методи. Було проведено систематичний аналіз сучасної наукової літератури з використанням баз даних PubMed, Scopus, Web of Science та Google Scholar. Спочатку було перевірено понад 700 джерел з використанням ключових слів, пов'язаних з віковими гемодинамічними реакціями на різні типи фізичних вправ. Після багатоетапної оцінки релевантності та повнотекстової оцінки, до остаточного синтезу було включено 109 публікацій.


Основні результати. Підлітковий вік характеризується переважною симпатичною реактивністю та нестабільністю барорефлексного контролю. Чоловіки в ранньому дорослому віці демонструють найвищий ступінь морфофункціональної зрілості серця та судин, демонструючи ефективну адаптацію до тренувань та оптимальний вегетативний баланс. Старший вік пов'язаний зі зниженням ударного об'єму, підвищенням жорсткості артерій та затримкою парасимпатичної реактивації. Модальність фізичних вправ значно формує профіль реакції: аеробні вправи посилюють перфузію тканин, анаеробні тренування викликають пікові пресорні реакції, змішані вправи викликають чергування симпатичних та вазодилататорних фаз, тоді як функціональні тренування покращують міжм'язову координацію та постуральну регуляцію кровообігу.


Наукова новизна. Систематизовано вікові моделі серцево-судинної реактивності та адаптації. Обґрунтовано ранній дорослий вік як фізіологічно оптимальний період для досягнення максимального тренувального ефекту. Виявлено внутрішньоколективні відмінності в гемодинамічній чутливості в підлітковій та дорослій групах та пов'язано їх зі ступенем серцево-судинної та вегетативної зрілості.


Висновки та рекомендації. Вікові фізіологічні характеристики вимагають індивідуалізації тренувальних стратегій: підлітки потребують поступового збільшення навантаження з акцентом на стабілізацію вегетативної регуляції; дорослі чоловіки отримують найбільшу користь від комбінованих та функціональних тренувальних методів; старші люди повинні надавати пріоритет аеробним та низькоінтенсивним вправам з ретельним моніторингом гемодинамічних параметрів.


 

##plugins.themes.bootstrap3.article.details##

Розділ
Статті

Посилання

Pastukhova V, Goncharenko I, Buka G, Ilyin V, Skorobohatov A, Tytarenko V. Effect of Physical Activity on Changes in Mitochondrial Pool of Muscle Fibers. Sports science and health. 2024;14(1):23–7. DOI: http://dx.doi.org/10.7251/SSH2401023P.

Lyzohub V, Kozhemiako T, Khomenko S, Pustovalov V, Shpaniuk V. Structural and functional reorganization of the heart and its relationship with physical activities in elite football players. Health Problems of Civilization. 2022;16(2):147–55. DOI: 10.5114/hpc.2022.116587.

Гуніна ЛМ, Бєленічев ІФ, Розова КВ, Атаман ЮО, Войтенко ВЛ, Безугла ВВ. Енергозабезпечення серця та скелетних м’язів за фізичних навантажень: мітохондріальний вектор. Фізіологічний журнал. 2022;68(5):67–78. DOI: 10.15407/fz68.05.067.

Martinez M, Kim J, Shah A. Exercise-Induced Cardiovascular Adaptations and Approach to Exercise and Cardiovascular Disease: JACC State-of-the-Art Review. JACC. 2021;78(14):1453–70.

Бакуновський ОМ, Лук’янцева ГВ, Малюга СС, Котляренко ЛТ. Зміни центральної гемодинаміки у період раннього відновлення після різних режимів фізичного навантаження. Фізіол журн. 2021;67(6):13-20.

Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, Xiao J. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Target Ther. 2022;7(1):306. doi: 10.1038/s41392-022-01153-1.

Iellamo F. Acute responses and chronic adaptations to exercise in humans: a look from the autonomic nervous system window. J Sports Med Phys Fitness. 2024 Feb;64(2):137-150. doi: 10.23736/S0022-4707.23.15353-9.

Omole JG, Okon IA, Udom GJ, Aziakpono OM, Agbana RD, Aturamu A et al. Neurophysiological mechanisms underlying cardiovascular adaptations to exercise: A narrative review. Physiol Rep. 2025;13(13):e70439. doi: 10.14814/phy2.70439.

Grotle AK, Langlo JV, Holsbrekken E, Stone AJ, Tanaka H, Fadel PJ. Age-related alterations in the cardiovascular responses to acute exercise in males and females: role of the exercise pressor reflex. Front Physiol. 2023;2(14):1287392. doi: 10.3389/fphys.2023.1287392.

Subramanian V, Tucker WJ, Peters AE, Upadhya B, Kitzman DW, Pandey A. Cardiovascular Aging and Exercise: Implications for Heart Failure Prevention and Management. Circ Res. 2025;137(2):205-30. doi: 10.1161/CIRCRESAHA.125.325531.

Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000 Sep 12;102(11):1270-5. doi: 10.1161/01.cir.102.11.1270.

Uchino BN, Birmingham W, Berg CA. Are older adults less or more physiologically reactive? A meta-analysis of age-related differences in cardiovascular reactivity to laboratory tasks. J Gerontol B Psychol Sci Soc Sci. 2010;65B(2):154-62. doi: 10.1093/geronb/gbp127.

Patel H, Alkhawam H, Madanieh R, Shah N, Kosmas CE, Vittorio TJ. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J Cardiol. 2017;9(2):134-138. doi: 10.4330/wjc.v9.i2.134.

Hughes DC, Ellefsen S, Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harb Perspect Med. 2018 Jun 1;8(6):a029769. doi: 10.1101/cshperspect.a029769.

Lukyantseva HV, Bakunovsky OM, Malyuga SS, Oliinyk TM, Manchenko NR, Manchenko YR, Korolyova DO. Comparative characteristics of changes in central hemodynamics during early recovery after different exercise regimes. Reports of Morphology. 2021;27(2):47-52. DOI: 10.31393/morphology-journal-2021-27(2)-07.

Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95(2):549-601. doi: 10.1152/physrev.00035.2013.

Dulaney CS, Heidorn CE, Singer TJ, McDaniel J. Mechanisms that underlie blood flow regulation at rest and during exercise. Adv Physiol Educ. 2023 Mar 1;47(1):26-36. doi: 10.1152/advan.00180.2022.

Hart EC, Joyner MJ, Wallin BG, Johnson CP, Curry TB, Eisenach JH, Charkoudian N. Age-related differences in the sympathetic-hemodynamic balance in men. Hypertension. 2009;54(1):127-33.

Murray KO, Mahoney SA, Venkatasubramanian R, Seals DR, Clayton ZS. Aging, aerobic exercise, and cardiovascular health: Barriers, alternative strategies and future directions. Exp Gerontol. 2023 Mar;173:112105. doi: 10.1016/j.exger.2023.112105.

Tysevych TV. Features of the functioning of the cardiovascular system of students in the junior courses of the institution of higher medical education depending on the level of physical health. Reports of Vinnytsia National Medical University. 2024;28(2):210-20. https://doi.org/10.31393/reports-vnmedical-2024-28(2)-05.

Schierbauer J, Hoffmeister T, Treff G, Wachsmuth NB, Schmidt WFJ. Effect of Exercise-Induced Reductions in Blood Volume on Cardiac Output and Oxygen Transport Capacity. Front Physiol. 2021;12:679232. doi: 10.3389/fphys.2021.679232.

Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab. 2024;36(2):278-300. doi: 10.1016/j.cmet.2023.12.008.

Лук’янцева ГВ, Бакуновський ОМ, Пастухова В.А., Дроздовська С. Б., Бабак С. В., Ільїн ВМ, Малюга СС. Вплив стато-динамічних вправ на параметри серцево-судинної системи при заняттях силовим фітнесом. Вісник Черкаського університету. 2024;2:59-68. DOI: 10.31651/2076-5835-2018-1-2024-2-59-68.

Лук’янцева ГВ, Бакуновський ОМ, Малюга СС, Олійник ТМ. Зміни роботи серця і центральної гемодинаміки у періоді раннього відновлення після статичного фізичного навантаження. Вісник проблем біології і медицини. 2022;4(167):353–60. DOI:10.29254/2077-4214-2022-4-167-353-360.

Малюга СС, Лук’янцева ГВ, Бакуновський ОМ. Особливості змін роботи серця і центральної гемодинаміки у період раннього відновлення після стато-динамічного фізичного навантаження. Вісник проблем біології і медицини. 2022;3(166):482–91. DOI: 10.29254/2077-4214-2022-3-166-482-491.

Sanchis-Gomar F, Perez MV, Perez-Quilis C, Lippi G, Lavie CJ, Haddad F et al. The Acquisition of Cardiovascular Adaptation to Aerobic Exercise: When Does It Begin and How Does It Evolve Depending on Intrinsic and Extrinsic Factors? Can J Cardiol. 2025 Mar;41(3):386-397. doi: 10.1016/j.cjca.2024.12.023.

Tucker WJ, Fegers-Wustrow I, Halle M, Haykowsky MJ, Chung EH, Kovacic JC. Exercise for Primary and Secondary Prevention of Cardiovascular Disease: JACC Focus Seminar 1/4. J Am Coll Cardiol. 2022 Sep 13;80(11):1091-1106. doi: 10.1016/j.jacc.2022.07.004.

Koller A, Laughlin MH, Cenko E, de Wit C, Tóth K, Bugiardini R et al. Functional and structural adaptations of the coronary macro- and microvasculature to regular aerobic exercise by activation of physiological, cellular, and molecular mechanisms: ESC Working Group on Coronary Pathophysiology and Microcirculation position paper. Cardiovasc Res. 2022 Jan 29;118(2):357-371. doi: 10.1093/cvr/cvab246.

Gerber Y, Gabriel KP, Jacobs DR Jr, Liu JY, Rana JS, Sternfeld B et al. The relationship of cardiorespiratory fitness, physical activity, and coronary artery calcification to cardiovascular disease events in CARDIA participants. Eur J Prev Cardiol. 2025 Jan 6;32(1):52-62. doi: 10.1093/eurjpc/zwae272.

Huang Z, Li X, Liu X, Xu Y, Feng H, Ren L. Exercise blood pressure, cardiorespiratory fitness, fatness and cardiovascular risk in children and adolescents. Front Public Health. 2024;12:1298612. doi: 10.3389/fpubh.2024.1298612.

Song Y, Sheykhlouvand M. A Comparative Analysis of High-Intensity Technique-Specific Intervals and Short Sprint Interval Training in Taekwondo Athletes: Effects on Cardiorespiratory Fitness and Anaerobic Power. J Sports Sci Med. 2024 Sep 1;23(1):672-683. doi: 10.52082/jssm.2024.672.;

Goeder D, Kröpfl JM, Angst T, Hanssen H, Hauser C, Infanger D et al. VascuFit: Aerobic exercise improves endothelial function independent of cardiovascular risk: A randomized-controlled trial. Atherosclerosis. 2024;399:118631. doi: 10.1016/j.atherosclerosis.2024.118631.

Isath A, Koziol KJ, Martinez MW, Garber CE, Martinez MN, Emery MS et al. Exercise and cardiovascular health: A state-of-the-art review. Prog Cardiovasc Dis. 2023 Jul-Aug;79:44-52. doi: 10.1016/j.pcad.2023.04.008.

Heinonen I. Cardiac output limits maximal oxygen consumption, but what limits maximal cardiac output? Exp Physiol. 2025 May;110(5):666-674. doi: 10.1113/EP091594.

Zhang Y, Chai S, Dai H, Chen X, Meng Z, Ying X. Vascular endothelial function and its response to moderate-intensity aerobic exercise in trained and untrained healthy young men. Sci Rep. 2024;14(1):20450.

Grandys M, Majerczak J, Frolow M. Training-induced impairment of endothelial function in track and field female athletes. Sci Rep 13, 2023;3502. https://doi.org/10.1038/s41598-023-30165-2.

Königstein K, Dipla K, Zafeiridis A. Training the Vessels: Molecular and Clinical Effects of Exercise on Vascular Health—A Narrative Review. Cells. 2023;12(21):2544. https://doi.org/10.3390/cells12212544.

Cotie LM, Marçal IR, Way KL, Lee LS, Patterson M, Pearson M et al. Sex Differences in Cardiovascular Adaptations Following Aerobic Exercise Training Programs: A Systematic Review and Meta-analysis. Can J Cardiol. 2025 Mar;41(3):337-353. doi: 10.1016/j.cjca.2024.12.005.

Afaghi S, Rahimi FS, Soltani P, Kiani A, Abedini A. Sex-Specific Differences in Cardiovascular Adaptations and Risks in Elite Athletes: Bridging the Gap in Sports Cardiology. Clin Cardiol. 2024;47(9):e70006.

Лук’янцева ГВ. Фізіологія людини (навч посібник для самостійної роботи студентів з індивідуальним графіком навчання та заочної форми навчання). 2-ге вид., без змін. - Київ : Нац. ун-т фіз. виховання і спорту України : Олімпійська література, 2017. 181 с.

Schumann M, Feuerbacher JF, Sünkeler M, Freitag N, Rønnestad BR, Doma K, Lundberg TR. Compatibility of Concurrent Aerobic and Strength Training for Skeletal Muscle Size and Function: An Updated Systematic Review and Meta-Analysis. Sports Med. 2022 Mar;52(3):601-612. doi: 10.1007/s40279-021-01587-7.

Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293-307.

Xiao, W., Bu, T., Zhang, J. et al. Effects of functional training on physical and technical performance among the athletic population: a systematic review and narrative synthesis. BMC Sports Sci Med Rehabil. 2025;17(2):102-24.

Wang X, Soh KG, Deng N, Zhang D, Cao S. Effects of functional training on muscle strength, jumping, and functional movement screen in wushu athletes. Heliyon. 2024;10(2):e24087. doi: 10.1016/j.heliyon.2024.e24087.

Wang, X., Soh, K.G., Zhang, L. et al. Effects of high-intensity functional training on physical fitness in healthy individuals: a systematic review with meta-analysis. BMC Public Health. 2025;25:528-35.

Yılmaz O, Soylu Y, Erkmen N, Kaplan T, Batalik L. Effects of proprioceptive training on sports performance: a systematic review. BMC Sports Sci Med Rehabil. 2024;16(1):149. doi: 10.1186/s13102-024-00936-z.

Ostchega Y, Porter KS, Hughes J, Dillon CF, Nwankwo T. Resting pulse rate reference data for children, adolescents, and adults: United States, 1999-2008. Natl Health Stat Report. 2011;(41):1-16.

Turcanu S, Gusetu G, Ciobanu DM, Istratoaie S, Rosu R, Alexandru MI, Muresan L, Lazea C, Pop D, Zdrenghea D, Cismaru G, Barsu C, Negru AG, Cismaru A, Cainap SS. Body size influences heart rate in children aged 6 to 18 years old. Medicine (Baltimore). 2023;102(3):e32602. doi: 10.1097/MD.0000000000032602.

de Simone G, Devereux RB, Daniels SR, Mureddu G, Roman MJ, Kimball TR, Greco R, Witt S, Contaldo F. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation. 1997 Apr 1;95(7):1837-43. doi: 10.1161/01.cir.95.7.1837.

Wyller VB, Barbieri R, Saul JP. Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress. Eur J Appl Physiol. 2011;111(3):497-507.

Paniccia M, Verweel L, Thomas S, Taha T, Keightley M, Wilson KE, Reed N. Heart Rate Variability in Healthy Non-Concussed Youth Athletes: Exploring the Effect of Age, Sex, and Concussion-Like Symptoms. Front Neurol. 2018 Jan 18;8:753. doi: 10.3389/fneur.2017.00753.

Helánová, K., Šišáková, M., Hnatkova, K. et al. Development of autonomic heart rate modulations during childhood and adolescence. Eur J Physiol. 2024;476:1187–207. https://doi.org/10.1007/s00424-024-02979-0.

Bourdon JL, Moore AA, Eastman M, Savage JE, Hazlett L, Vrana SR, Hettema JM, Roberson-Nay R. Resting Heart Rate Variability (HRV) in Adolescents and Young Adults from a Genetically-Informed Perspective. Behav Genet. 2018 Sep;48(5):386-396. doi: 10.1007/s10519-018-9915-1.

Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric Oxide and Endothelial Dysfunction. Crit Care Clin. 2020 Apr;36(2):307-321. doi: 10.1016/j.ccc.2019.12.009.

Micieta V, Cehakova M, Tonhajzerova I. Endothelial Dysfunction in Adolescent Hypertension: Diagnostic Challenges and Early Cardiovascular Risk. J Cardiovasc Dev Dis. 2025;12(9):326. doi: 10.3390/jcdd12090326.

Franco M, Khorrami Chokami K, Albertelli M, Teti C, Cocchiara F, Gatto F, Trombetta C, Ferone D, Boschetti M. Modulatory activity of testosterone on growth pattern and IGF-1 levels in vanishing testis syndrome: a case report during 15 years of follow-up. BMC Endocr Disord. 2023;23(1):13. doi: 10.1186/s12902-022-01258-2.

Wójcik M, Starzyk JB, Drożdż M, Drożdż D. Effects of Puberty on Blood Pressure Trajectories - Underlying Processes. Curr Hypertens Rep. 2023;25(7):117-125. doi: 10.1007/s11906-023-01241-9.

Nottin S, Vinet A, Stecken F, N'Guyen LD, Ounissi F, Lecoq AM, Obert P. Central and peripheral cardiovascular adaptations to exercise in endurance-trained children. Acta Physiol Scand. 2002;175(2):85-92.

Dupuy A, Birat A. Post-exercise heart rate recovery and parasympathetic reactivation are comparable between prepubertal boys and well-trained adult male endurance athletes. Eur J Appl Physiol. 2022;122:345–55.

Chirico D, Liu J, Klentrou P, Shoemaker JK, O'Leary DD. The Effects of Sex and Pubertal Maturation on Cardiovagal Baroreflex Sensitivity. J Pediatr. 2015 Nov;167(5):1067-73. doi: 10.1016/j.jpeds.2015.07.054.

Norris R, Carroll D, Cochrane R. The effects of aerobic and anaerobic training on fitness, blood pressure, and psychological stress and well-being. J Psychosom Res. 1990;34(4):367-75. doi: 10.1016/0022-3999(90)90060-h.

Malyuga SS, Lukyantseva HV, Bakunovsky O. O. Features of functional changes in blood vessels during the period of early recovery after static physical exercise. Reports of Morphology. 2022;28(4):48–53. DOI: 10.31393/morphology-journal-2022-28(4)-07.

Eddolls WTB, McNarry MA, Stratton G, Winn CON, Mackintosh KA. High-Intensity Interval Training Interventions in Children and Adolescents. Sports Med. 2017;47(11):2363-2374. doi: 10.1007/s40279-017-0753-8.

Ketelhut S, Ketelhut K, Ketelhut S, Ketelhut R. Effects of School-Based High-Intensity Interval Training on Hemodynamic Parameters and Heart Rate Variability: A Randomized Controlled Trial. Journal of Strength and Conditioning Research. 2024:38(6):1033-40.| DOI: 10.1519/JSC.0000000000004744

Urabe J, Ono K, Okagawa J, Nakayama Y, Yamau R, Ishikawa A. Effect of high-intensity interval exercise on renal artery hemodynamics in healthy young adults. J Sports Med Phys Fitness. 2023;63(1):129-35.

Grässler B, Thielmann B, Böckelmann I, Hökelmann A. Effects of Different Training Interventions on Heart Rate Variability and Cardiovascular Health and Risk Factors in Young and Middle-Aged Adults: A Systematic Review. Front Physiol. 2021 Apr 23;12:657274. doi: 10.3389/fphys.2021.657274.

Tabatabai SM, Jalilian P. The Effect of Six Weeks of TRX Training on Selected Physical Fitness Components in High School Students in Mashhad. J Sport Biomech. 2025;11(1):34-45.

Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson. 2020;22:87-95. https://doi.org/10.1186/s12968-020-00683-3.

Snel GJH, van den Boomen M, Hurtado-Ortiz K, Slart RHJ, van Deursen VM, Nguyen CT et al. Cardiac Alterations on 3T MRI in Young Adults With Sedentary Lifestyle-Related Risk Factors. Front Cardiovasc Med. 2022:9:840790. doi: 10.3389/fcvm.2022.840790.

Pandey A, Allen NB, Ayers C, Reis JP, Moreira HT, Sidney S et al. Fitness in Young Adulthood and Long-Term Cardiac Structure and Function: The CARDIA Study. JACC Heart Fail. 2017;5(5):347-355. doi: 10.1016/j.jchf.2016.11.014.

Carlsson M, Andersson R, Bloch KM, Steding-Ehrenborg K, Mosén H, Stahlberg et al. Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson. 2012;14(1):51. doi: 10.1186/1532-429X-14-51.

Fernberg U, Fernström M, Hurtig-Wennlöf A. Higher Total Physical Activity is Associated with Lower Arterial Stiffness in Swedish, Young Adults: The Cross-Sectional Lifestyle, Biomarkers, and Atherosclerosis Study. Vasc Health Risk Manag. 2021;17:175-185. doi: 10.2147/VHRM.S283211.

Lear R, Metcalf B, Brailey G, Nunns M, Bond B, Hillsdon M, Pulsford R. Associations of habitual physical activity and carotid-femoral pulse wave velocity; a systematic review and meta-analysis of observational studies. PLoS One. 2023;18(4):e0284164. doi: 10.1371/journal.pone.0284164.

Alessio HM, Ballard KD, Reidy PT, Hayward KM, Bagg AM, Cooley RA et al. Short term e-bicycle riding results in favorable cardiometabolic shifts in moderately active adults. Eur J Appl Physiol. 2024;124(7):1969-1977. doi: 10.1007/s00421-024-05418-1.

Корман Ш.-АС, Лук’янцева Г В. Вікові зміни макро-і мікроциркуляції крові під впливом дозованого фізичного навантаження залежно від ступеня тренованості організму. Вісник Черкаського університету, серія Біологія. 2024;1:63-71. DOI: 10.31651/2076-5835-2018-1-2024-1-63-71.

Barden AE, Shinde S, Beilin LJ, Phillips M, Adler B, Mori TA. 20-HETE, Blood Pressure, and Vascular Stiffness in Young Adults. Hypertension. 2024;81(12):2549-2558. doi: 10.1161/HYPERTENSIONAHA.124.23634.

Diaconu R, Donoiu I, Mirea O, Bălşeanu TA. Testosterone, cardiomyopathies, and heart failure: a narrative review. Asian J Androl. 2021;23(4):348-356. doi: 10.4103/aja.aja_80_20.

Macvanin M, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. New insights on the cardiovascular effects of IGF-1. Front Endocrinol (Lausanne). 2023 Feb 9;14:1142644. doi: 10.3389/fendo.2023.1142644.

Lodovico ED, Facondo P, Delbarba A, Pezzaioli LC, Maffezzoni F, Cappelli C et al. Testosterone, Hypogonadism, and Heart Failure. Circ Heart Fail. 2022;15(7):e008755.

Okon IA, Beshel JA, Okorocha AE, Eze EE, Owu DU. Blood pressure and ECG variables of healthy young males and females participating in moderate aerobic exercise. J Bodyw Mov Ther. 2024:40:965-970.

Mi MY, Perry AS, Krishnan V, Nayor M. Epidemiology and Cardiovascular Benefits of Physical Activity and Exercise. Circ Res. 2025;137(2):120-138. doi: 10.1161/CIRCRESAHA.125.325526.

Корман Ш.-А., Лук’янцева Г.В. Ультраструктурні механізми адаптації кисеньтранспортної системи до м’язової роботи. Вісник проблем біології та медицини. 2025;2(176):177-185. DOI 10.29254/2077-4214-2025-2-177-185.;

Su R, Peng P, Zhang W, Huang J, Fan J, Zhang D et al. Dose-effect of exercise intervention on heart rate variability of acclimatized young male lowlanders at 3,680 m. Front Physiol. 2024:15:1331693. doi: 10.3389/fphys.2024.1331693.

Ishii K, Izaki T, Asahara R, Komine H. Carotid sinus baroafferent signals contribute to cerebral blood flow regulation during acute hypotension in young males: A randomized crossover study. Physiol Rep. 2024;12(3):e15937. doi: 10.14814/phy2.15937.

Watanabe DK, Hong S, Williams DP, Kohn J, Koenig J, Reyes Del Paso GA, Thayer JF. Age and sex differences in blood pressure regulation: A focus on the vascular baroreflex limb. Physiol Rep. 2025;13(12):e70413. doi: 10.14814/phy2.70413126.

Babcock MC, DuBose LE, Hildreth KL, Stauffer BL, Cornwell WK, Kohrt WM, Moreau KL. Age-associated reductions in cardiovagal baroreflex sensitivity are exaggerated in middle-aged and older men with low testosterone. J Appl Physiol. 2022 Aug 1;133(2):403-415. doi: 10.1152/japplphysiol.00245.2022.

Nakamura K, Fujiwara T, Hoshide S, Ishiyama Y, Taki M, Ozawa S et al. Differences in exercise-induced blood pressure changes between young trained and untrained individuals. J Clin Hypertens (Greenwich). 2021;23(4):843-8. doi: 10.1111/jch.14177.

Zubac D, Goswami N, Ivančev V. Independent influence of age on heart rate recovery after flywheel exercise in trained men and women. Sci Rep. 2021;11:120-21. https://doi.org/10.1038/s41598-021-91565-w.

Haferanke J, Baumgartner L, Willinger L, Oberhoffer-Fritz R, Schulz T. Molecular Mechanisms of Vascular Tone in Exercising Pediatric Populations: A Comprehensive Overview on Endothelial, Antioxidative, Metabolic and Lipoprotein Signaling Molecules. Int J Mol Sci. 2025;26(3):1027. doi: 10.3390/ijms26031027.

Singam NSV, Fine C, Fleg JL. Cardiac changes associated with vascular aging. Clin Cardiol. 2020 Feb;43(2):92-98. doi: 10.1002/clc.23313.

Triposkiadis F, Xanthopoulos A, Butler J. Cardiovascular Aging and Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol. 2019 Aug 13;74(6):804-813. doi: 10.1016/j.jacc.2019.06.053.

Kaur H, Werstuck GH. The Effect of Testosterone on Cardiovascular Disease and Cardiovascular Risk Factors in Men: A Review of Clinical and Preclinical Data. CJC Open. 2021;3(10):1238-48.

Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D, Bonaduce D.

β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol. 2014;4:396.

Dong M, Yang Z, Fang H, Xiang J, Xu C, Zhou Y, Wu Q, Liu J. Aging Attenuates Cardiac Contractility and Affects Therapeutic Consequences for Myocardial Infarction. Aging Dis. 2020;11(2):365-76.

Calvo-López M, Ortega-Paz L, Jimenez-Trinidad FR, Brugaletta S, Sabaté M, Dantas AP. Sex-associated differences in cardiac ageing: Clinical aspects and molecular mechanisms. Eur J Clin Invest. 2024;54(7):e14215.

Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R3-R12. doi: 10.1152/ajpregu.00031.2007.

Felber Dietrich D, Schindler C, Schwartz J, Barthélémy JC, Tschopp JM, Roche F et al. Heart rate variability in an ageing population and its association with lifestyle and cardiovascular risk factors: results of the SAPALDIA study. Europace. 2006 Jul;8(7):521-9. doi: 10.1093/europace/eul063.

Vakka A, Warren JS, Drosatos K. Cardiovascular aging: from cellular and molecular changes to therapeutic interventions. J Cardiovasc Aging. 2023;3(3):23. doi: 10.20517/jca.2023.09

Ji H, Kwan AC, Chen MT, Ouyang D, Ebinger JE, Bell SP et al. Sex Differences in Myocardial and Vascular Aging. Circ Res. 2022 Feb 18;130(4):566-577. doi: 10.1161/CIRCRESAHA.121.319902.

Laurent S, Boutouyrie P. Arterial Stiffness and Hypertension in the Elderly. Front Cardiovasc Med. 2020 Oct 29;7:544302. doi: 10.3389/fcvm.2020.544302.

Delluc A, Lacut K, Rodger MA. Arterial and venous thrombosis: What's the link? A narrative review. Thromb Res. 2020 Jul;191:97-102. doi: 10.1016/j.thromres.2020.04.035.

Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012;35: 1039–47 (2012). https://doi.org/10.1038/hr.2012.138.

Majerczak J, Grandys M, Frołow M, Szkutnik Z, Zakrzewska A, Niżankowski R, Duda K, Chlopicki S, Zoladz JA. Age-Dependent Impairment in Endothelial Function and Arterial Stiffness in Former High Class Male Athletes Is No Different to That in Men With No History of Physical Training. J Am Heart Assoc. 2019;8(18):e012670.

Jakovljevic DG. Physical activity and cardiovascular aging: Physiological and molecular insights. Exp Gerontol. 2018 Aug;109:67-74. doi: 10.1016/j.exger.2017.05.016.

DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, Seals DR. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000 Sep 19;102(12):1351-7. doi: 10.1161/01.cir.102.12.1351.

Benavides-Roca LA, Parra G, Zamunér AR. Acute Blood Pressure Changes Following Resistance Exercise in Adults with Hypertension. J Funct Morphol Kinesiol. 2025 Sep 12;10(3):349. doi: 10.3390/jfmk10030349.

Jurik, R., Stastny, P., Kolinger, D. et al. Blood pressure changes during different methods of resistance training in normotensive and stage 1 hypertensive individuals: a repeated measures cross-sectional study. BMC Sports Sci Med Rehabil. 2025;17:49-55). https://doi.org/10.1186/s13102-025-01097-3.

Sant'Ana LO, Machado S, Ribeiro AAS, Dos Reis NR, Campos YAC, da Silva JGV, Scartoni FR, Brown AF, Monteiro ER, Novaes JDS, Vianna JM, Budde H. Effects of Cardiovascular Interval Training in Healthy Elderly Subjects: A Systematic Review. Front Physiol. 2020 Jul 31;11:739. doi: 10.3389/fphys.2020.00739.

Gaedtke A, Morat T. TRX Suspension Training: A New Functional Training Approach for Older Adults - Development, Training Control and Feasibility. Int J Exerc Sci. 2015 Jul 1;8(3):224-233. doi: 10.70252/SWSX2936.

Статті цього автора (авторів), які найбільше читають