Cell selection with barium ions for obtaining genetically modified tobacco
##plugins.themes.bootstrap3.article.main##
Анотація
Introduction. The salinity is one of the most aggressive environmental factors. It provokes the wide range of pathological changes in the plant tissues. The drastic decrease of K+ cations in plant cells due to salt toxicity is the main feature of injury. The lands with secondary salinization increase. Fresh water in many regions transforms to the product of deficit even to the public. So the problem of obtaining plant forms with elevated levels of salt tolerance becomes extremely significant. Genetic effects that increased the genotype tolerance abilities are the aims of various investigations. Cell selection with heavy metal ions is the appropriate biotechnology for obtaining plant forms that challenged the salinity. The scientific interest to Ba2+ ions is due to its interaction with K+ cations. There was shown that Ba2+ interrupted the K+ inward transport
Purpose. The obtaining glycophyte-derived salt tolerant forms (cell lines – regenerants – progeny )via cell selection.
Methods. Selective systems with lethal doses of barium ions (Ba2+) for obtaining tobacco cell forms tolerant to salt stress are proposed and elaborated. The minimum of Ba 2+ doses that eliminate wild type cell population was established as lethal doses. Primary calli cultures were initiated from tobacco leaves on B5 cultural agar medium. Cell suspension was cultivated in liquid B5 medium. Cell suspension (wild type) was placed between two layers of agar selective medium with the addition of lethal doses of barium ions (“plating procedure”). Only Ba-resistant cells survive under such stress pressure. The survived cells formed primary minicolonies. Such colonies are considered to be tobacco Ba-resistant cell lines (Ba-RCL). Ba-RCL grew at Ba2+ ions presence during 3 passages. Then callus was cut and transferred to fresh media: basal medium (normal conditions) and selective media (stress conditions).
Resistant cell variants were tested under lethal salinity. Salt stress was simulated by the addition of sodium chloride or sodium sulfate. There were established three variants of selective systems: medium with the addition of Ba2+ cations, (stress I); cultural media with the addition of salinity (stress II, III). Genetic basis of combined stress resistance was confirmed via media rotations. The changes were: normal conditions → stresses I, II, III; stresses I, II, III → normal conditions; stress I → stress II or stress III or other way roads. The type of cultural medium and the number of passages were always free. As proliferation marker calli relative fresh mass growth (RFW, Δm) was used.
Regenerants and plants of R1 seed progeny were cultivated in vitro at presence of sea water salts.
Result. Tobacco cel lines with combined resistance to lethal ion and chloride and sulfate stresses were obtained via cell selection with Ba2+ cation. Ba-RCL maintained their viability under any stress pressure. The calli relative fresh mass growth (RFW, Δm) was always positive.
Regenerants from selected cell lines and R1 seed progeny were cultivated at presence of sea water salts (2,5%) in vitro. During such cultivations tested plants formed new roots and leaves. After transfer to control (salt free) medium plants adapted to normal conditions.
Originality of the investigation and its priority was in the promotion of cell selection with Ba2+cations for obtaining tobacco variants tolerant to lethal salinity.
Conclusion. Cell selection with heavy metal ions is the perspective approach for obtaining genetically modified plant forms. Barium cation is appropriate agent for selection variants with higher tolerance to salinity. Tobacco is a classic glycophyte. From such initial tissues tobacco plant forms (cell lines → regenerants → progeny) that survive under lethal salinity were obtained. This approach is suitable for other genotypes.
##plugins.themes.bootstrap3.article.details##
Автори, які публікуються у цьому журналі, погоджуються з такими умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
3. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи.
УГОДА
ПРО ПЕРЕДАЧУ АВТОРСЬКИХ ПРАВ
Я, автор статті/Ми, автори рукопису статті _______________________________________________________________________
у випадку її прийняття до опублікування передаємо засновникам та редколегії наукового видання «Вісник Черкаського Університету: Серія Біологічні науки» такі права:
1. Публікацію цієї статті українською (англійською) мовою та розповсюдження її друкованої версії.
2. Розповсюдження електронної версії статті через будь-які електронні засоби (розміщення на офіційному web-сайті журналу, в електронних базах даних, репозитаріях, тощо).
При цьому зберігаємо за собою право без узгодження з редколегією та засновниками:
1. Використовувати матеріали статті повністю або частково з освітньою метою.
2. Використовувати матеріали статті повністю або частково для написання власних дисертацій.
3. Використовувати матеріали статті для підготовки тез, доповідей конференцій, а також усних презентацій.
4. Розміщувати електронні копії статті (зокрема кінцеву електронну версію, завантажену з офіційного web-сайту журналу) на:
a. персональних web-pecypcax усіх авторів (web-сайти, web-сторінки, блоги, тощо);
b. web-pecypcax установ, де працюють автори (включно з електронними інституційними репозитаріями);
с. некомерційних web-pecypcax відкритого доступу (наприклад, arXiv.org).
Цією угодою ми також засвідчуємо, що поданий рукопис відповідає таким критеріям:
1. Не містить закликів до насильства, розпалювання расової чи етнічної ворожнечі, які викликають занепокоєння, є загрозливими, ганебними, наклепницькими, жорстокими, непристойними, вульгарними тощо.
2. Не порушує авторських прав та права інтелектуальної власності інших осіб або організацій; містить всі передбачені чинним законодавством про авторське право посилання на цитованих авторів та / або видання, а також використовувані в статті результати і факти, отримані іншими авторами чи організаціями.
3. Не був опублікований раніше в інших видавництвах та не був поданий до публікації в інші видання.
4. Не включає матеріали, що не підлягають опублікуванню у відкритій пресі, згідно з чинним законодавством.
____________________ ___________________
підпис П.І.Б. автора
"___"__________ 20__ р.
Посилання
Sergeeva, L.E. (2002) New selective medium with barium ions is alternative system for obtaining salt resistant cell lines. Biotehnologia [Biotechnology], 2. P.47-52. (in Russ).
Nikolaev, L.A. (1968) Biocatalic agents and their models Higher school. – 196p. (in Russ.)
Tu, S-I, Nungesser, E. & Brauer, D. (1989). Characterization of the effect of divalent cations on the coupled activities of the H+-ATPase in tonoplast vesicles. Plant Physiol., 90, P.1636-1643.
Miller, R.J., Dumford, S.W., Koeppe D.E. & Hanson J.B. (1970). Divalent cation stimulation of substrate oxidation by corn mitochondria Ibid, 45, P.649-653.
Hasenstein, K.H., Evans, M.L., Stinemetz, C.L., Moore, R., Fondrren, M., Koon, C., Higby, M. & Smucker, A.J.M. (1988). Comparative effectiveness of metal ions in inducing curvature in primary roots of Zea mays. Ibid, 86, P. 885-889.
Rubio, F., Nieves-Cordones, M., Aleman, F. & Martinez, V. (2008). Relative contribution of AtHAK5 and AtHAK1 to K+ uptake in the high affinity range of concentrations. Physiol. Plant., 134, P.598-608.
Fan, L.M., Wu, W.-H. & Yang, Y.-Y. (1999). Identification and characterization the inward K+ channel in the plasma membrane Brassica pollen protoplasts. Plant Cell Physiol., 40 (8), P.859-865.
Wang, D.-M., Zhang, J.-L. & Flowers, T.J. (2007). Low affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol., 145, P.559-571.
Hasegawa, P.M., Bressan, R.A., Zhu, J.K. & Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, P. 463-499.
Gamborg, J.L., Miller, R.A. & Ojima K. (1968). Nutrient requirement of suspension cultures of soybean roots. Exp. Cell Res., 509, P.151-158.
Conner, A.J. & Meredith, C.P, (1985) Large scale selection of aluminum-resistant mutants from plant cell culture: expression and inheritance in seedlings. Theor. Appl. Genet., 71, P. 159-165.
Murashige, T., Skoog, F., (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture Physiol. Plant. 15. P. 473-497.
Sergeeva, L.E., Mykhalska, S.I. (2019) Cell selection with heavy metal ions for obtaining salt tolerant plant cell culture Fiziologia rastenii i genttika [Plant physiol. and genetics] т.51, №4, P. 315-323 . doi.10.15407/frg2019.04.315