Systems biology and systems regulation of physiological processes

Main Article Content

Ilyukha Lidia Mykhailivna

Abstract

Systems biology is an emerging discipline focused on tackling the enormous
intellectual and technical challenges associated with translating genome sequence into a comprehensive
understanding of how organisms are built and run. Physiology and systems biology share the goal of
understanding the integrated function of complex, multicomponent biological systems ranging from
interacting proteins that carry out specific tasks to whole organisms. Yet, the challenge for biology
overall is to understand how organisms’ function. By discovering how function arises in dynamic
interactions, systems biology addresses the missing links between molecules and physiology.

Article Details

Section
Статті
Author Biography

Ilyukha Lidia Mykhailivna, Cherkasy National University named after Bohdan Khmelnytskyi

candidate of biological sciences, associate professor, Department of Anatomy, Physiology and Physical Rehabilitation, Cherkasy National University named after Bohdan Khmelnytskyi

References

Kohl P., Crampin E.J., Quinn T.A., Noble D. Systems biology: an approach. Clin Pharmacol Ther. 2010. V. 88

Issue 1, P. 25-33. doi: 10.1038/clpt.2010.92.

Ukai H., Ueda H.R. Systems biology of mammalian circadian clocks. Annual Review of Physiology. 2010;

V.72 P. 579-603. doi: 10.1146/annurev-physiol-073109-130051.

Bruggeman F.J., Westerhoff H.V. The nature of systems biology. Trends Microbiol. 2007 V.15 Issue 1.

P.45-50. doi: 10.1016/j.tim.2006.11.003.

Paul L. Greenhaff, Mark Hargreaves Systems biologging human exercise physiology: is it something different

from integrative physiology? Journal of Physiology. 2011. P.: 1031-1036

Aderem A. Systems biology: its practice and challenges. Cell. 2005. V.121. Issue 4. P.: 511-513. doi:

1016/j.cell.2005.04.020.

Alexandrov Y.I., Pletnikov M.V. Neuronal metabolism in learning and memory: The anticipatory activity

perspective. Neurosci Biobehav Rev. 2022. V.137. doi: 10.1016/j.neubiorev.2022.104664.

Ukai H., Sumiyama K. Ueda H.R. Next-generation human genetics for organism-level systems biology. Curr

Opin Biotechnol. 2019. V.58. P. :137-145. doi: 10.1016/j.copbio.2019.03.003.

Munsie M/, Gyngell C. Ethical issues in genetic modification and why application matters. Curr Opin Genet

Dev. 2018. V.52. P.: 7-12. doi: 10.1016/j.gde.2018.05.002.

di Iulio J., Bartha I., Wong E.H., Yu H.C., Lavrenko V., Yang D., Jung I., Hicks M.A., Shah N., Kirkness E.F.,

Fabani M.M., Biggs W.H., Ren B., Venter J.C., Telenti A. The human noncoding genome defined by genetic

diversity. Nat Genet. 2018. V.50. Issue 3. P.:333-337. doi: 10.1038/s41588-018-0062-7.

Uffelmann E., Huang Q.Q., Munung N.S., De Vries J., Okada Y., Martin A.R., Martin H.C., Lappalainen T.,

Posthuma D. Genome-wide association studies. Nature Reviews. 2021. V. 1. P.: 59. doi: 10.1038/s43586-021-

-9.

Cobelli C., Carson E. Introduction to Modeling in Physiology and Medicine (Second Edition). Academic Press.

P. 384

Robert L. Hester, Radu Iliescu, Richard Summers, Thomas G. Coleman Systems biology and integrative

physiological modelling. Journal of Physiology. Volume 589, Issue 5. 2011.

https://doi.org/10.1113/jphysiol.2010.201558

Zimmermann M. General Principles of Regulation. In: Schmidt, R.F., Thews, G. (eds) Human Physiology..

pp 324–332 https://doi.org/10.1007/978-3-642-73831-915.

Chen Y.W., Hubal M.J., Hoffman E.P., Thompson P.D. & Clarkson P.M. Molecular responses of human

muscle to eccentric exercise. J Appl Physiol, 2003. V. 95, P.:2485–2494.

Hubal M.J., Chen T.C., Thompson P.D. & Clarkson P.M. Inflammatory gene changes associated with the

repeated-bout effect. Am J Physiol Regul Integr Comp Physiol. 2008. V. 294, P.:1628–1637.

Mahoney D.J., Parise G., Melov S., Safdir A. & Tarnopolsky M.A. Analysis of global mRNA expression in

human skeletal muscle during recovery from endurance exercise. 2005. P.: 1498–1500.

Melov S., Tarnopolsky M.A., Beckman K., Felkey K. & Hubbard A. Resistance exercise reverses aging in

human skeletal muscle. PLoS One 2007. V.5, P.465 .

Stepto N.K., Coffey V.G., Carey A.L., Ponnampalam A.P., Canny B.J., Powell D. & Hawley J.A. Global gene

expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc.

V.41., P.:546–565.

Bouchard C. & Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports

Exerc. 2001. V.33, P.: 446–451.

Timmons J.A., Knudson S., Rankinen T., Koch L.G., Sarzynski M., Jensen T., Keller P., Scheele C., Vollaard

N.B., Nielsen S., Åkerstrom T., MacDougald O.A., Jansson E., Greenhaff P.L., Tarnopolsky M.A., van Loon

L.J.C., Pedersen B.K., Sundberg C.J., Wahlestedt C., Britton S.L. & Bouchard C. Using molecular

classification to predict gains in maximal aerobic capacity following endurance exercise training exercise

training in humans. J Appl Physiol. 2010. V. 108., P.:1487–1496.