uk Dynamics of Electrical Activity of Olfactory Structures under Conditions of Calypsol / Ketamine Anesthesia
Main Article Content
Abstract
In this study, we have characterized high-frequency and low-frequency oscillations at several stages of olfactory processing under calypsol anesthesia in albino rats. While monitoring the animal's respiration, we also obtained field potentials from the olfactory bulb and piriform (olfactory) cortex and simultaneously recorded membrane potentials in piriform cortex pyramidal cells. Manifestations of the considered specific high-frequency components of electrical activity of rhinencephaly structures, in particular olfactory-amygdala rhythm and high-frequency synchronized activity, are obviously the result of complex interaction of peripheral and central excitation mechanisms at the level of olfactory bulbs. We believe this finding has important functional as well as evolutionary implications.
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
AGREEMENT ABOUT TRANSMISSION OF COPYRIGHT
I, the author of the article / We, the authors of the manuscript _______________________________________________________________________
in case of its acceptance for publication, we transfer the following rights to the founders and editorial boards of the scientific publication "Cherkasy University Bulletin: Biological Sciences Series":
1. Publication of this article in Ukrainian (English) and distribution of its printed version.
2. Dissemination of the electronic version of the article through any electronic means (placing on the official journal web site, in electronic databases, repositories, etc.). At the same time we reserve the right without consent of the editorial board and the founders:
1. Use the materials of the article in whole or in part for educational purposes.
2. To use the materials of the article in whole or in part for writing your own theses.
3. Use article materials to prepare Summarys, conference reports, and oral presentations.
4. Post electronic copies of the article (including the final electronic version downloaded from the journal's official website) to:
a. personal web-pecypcax of all authors (web sites, web pages, blogs, etc.);
b. web-pecypcax of the institutions where the authors work (including electronic institutional repositories);
with. non-profit, open-source web-pecypcax (such as arXiv.org).
With this agreement, we also certify that the submitted manuscript meets the following criteria:
1. Does not contain calls for violence, incitement of racial or ethnic enmity, which are disturbing, threatening, shameful, libelous, cruel, indecent, vulgar, etc.
2. Does not infringe the copyrights and intellectual property rights of others or organizations; contains all the references to the cited authors and / or publications envisaged by applicable copyright law, as well as the results and facts used in the article by other authors or organizations.
3. It has not been previously published in other publishers and has not been published in other publications.
4. Does not include materials that are not subject to publication in the open press, in accordance with applicable law.
____________________ ___________________
First name, Last name, signature of the author
"___" __________ 20__
References
Список використаної літератури
McCormick D.A, Nestvogel D.B, He B.J. Neuromodulation of Brain State and Behavior. Neurosci. 2020. V. 8. Issue 43. P. 391-415.
McGinley M.J., Vinck M., Reimer J., Batista-Brito R., Zagha E., Cadwell C.R., Tolias A.S., Cardin J.A., McCormick D.A. Waking State: Rapid Variations Modulate Neural and Behavioral Responses. Neuron. 2015. V.87. Issue 6. P. 1143-1161.
Chelaru M. I., Eagleman S., Andrei A.R., Milton R., Kharas N., Dragoi V. High-order interactions explain the collective behavior of cortical populations in executive but not sensory areas. Neuron. 2021. V.109. Issue 24. P. 3954-3961.
Beaman C.B., Eagleman S.L., Dragoi V. Sensory coding accuracy and perceptual performance are improved during the desynchronized cortical state. Nat Commun. 2017. V. 8 Issue 1. P. 1308. doi: 10.1038/s41467-017-01030-4.
Sachdev R.N., Ebner F.F. and Wilson C.J. Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J Neurophysiol. 2004. V. 92, Issue 6. P. 3511–3521.
Iravani B., Schaefer M., Wilson D.A., Arshamian A., Lundström J.N. The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proc Natl Acad Sci U S A. 2021. V.118. P. 42. doi:10.1073/pnas.2101209118
Kay L.M., Beshel J., Brea J., Martin C., Rojas-Líbano D., Kopell N. Olfactory oscillations: the what, how and what for. Trends Neurosci. 2009. V. 32, Issue 4. P. 207- 214. doi: 10.1016/j.tins.
Ілюха Л. М. Швидкохвильові та повiльнохвильові складові електричної активності нюхових луковиць. Вісник Черкаського університету. Серія : Біологічні науки. 2016. № 2. С. 27-32.
Ілюха Л. М., Боєчко Ф.Ф. Електрична активність нюхових цибулин сірійських хом'яків (Mesocricetusauratus). Вісник Черкаського університету. Серія : Біологічні науки. 2018. № 1.
С. 39-45.
Seubert J., Regenbogen C., Habel U., Lundström J. N., Behavioral and neural determinants of odor valence perception. Springer Handbook of Odor. 2017. P. 99–100.
Ілюха Л. М. Електроенцефалографія нюхових структур мозку ссавців в процесі сприйняття та аналізу запахової інформації Вісник Черкаського університету. Серія : Біологічні науки. 2019. № 1. С. 33-38.
Ілюха Л. М. Електрична активність риненцефальних структур лабораторних тварин за умов запахової стимуляції. Вісник Харківського національного університету імені В. Н. Каразіна. Серія : Біологія. 2010. № 920, Вип. 12. С. 130-136.
Moody O.A., Zhang E.R., Vincent K.F., Kato R., Melonakos E.D., Nehs C.J., Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg. 2021. V.132. Issue 5. P.1254-1264.
Lee H., Wang S., Hudetz A.G. State-Dependent Cortical Unit Activity Reflects Dynamic Brain State Transitions in Anesthesia. J Neurosci. 2020. V.40 Issue 49. P. 9440-9454. doi: 10.1523/JNEUROSCI.0601.
Samiee S., Baillet S. Time-resolved phase-amplitude coupling in neural oscillations. Neuroimage. 2017. V. 159. P.270-279.
Steriade M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience. 2000. V.101, Issue 2. P. 243-276. doi: 10.1016/s0306-4522(00)00353-5.
Fontanini A., Spano P., Bower J.M. Ketamine-xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci. 2003. V. 23, Issue 22. P.7993-8001. doi: 10.1523/JNEUROSCI.23-22-07993.
Ілюха Л. М. Респіраторні хвилі як одні із характеристичних паттернів електричної активності нюхових структур мозку Вісник Черкаського університету. Серія : Біологічні науки. 2010. Вип. 184. С. 48-52.