Features of Age-Related Changes in the Organization of Human Brain Activity During Cognitive Performance Testing

Main Article Content

Ольга Подковка
Микола Макарчук
Наталія Філімонова
Ігор Пампуха
Микола Нікіфоров
Віталій Лоза
Катерина Кравченко

Abstract

Introduction. Any type of activity requires high-speed indicators, which are reflected in reaction time, thinking speed, etc. Cognitive performance characterizes the ability to perform tasks flawlessly over an extended period, the ability for painstaking, possibly monotonous work, and perseverance. Thus, this indicator together with peculiarities of the neuron networks formation are useful markers for assessment of individual suitability for certain work and monitoring professional skills.


Purpose. To investigate age-related differences in the functioning of brain neural networks during a test assessing cognitive performance in representatives of various military professions, with the aim of implementing age-based professional suitability control procedures and effective personnel selection.


Methods. Forty-seven healthy volunteers, representing various military professions, aged 18-54 years, were divided into three groups (Group I – 18-23 years, n=16; Group II – 24-34 years, n=19; Group III – 35-54 years, n=12). They underwent a test to determine cognitive performance using an authorial computer-based methodology. Simultaneously, electroencephalogram (EEG) recordings were made, followed by coherence analysis.


Result. Comparative analysis using the Mann-Whitney test revealed that the relative number of errors was significantly lower in Group II compared to Group I (p<0.01), with no differences observed between Groups I and III or II and III (p=0.39 and p=0.52, respectively). The Kruskal-Wallis test revealed differences across the three groups in connections with significant synchronization in the δ-range for O2P4 and O2T6 (only present in Group III), in the θ-range for C3Fz, P3Fz, PzFz, PzC3, PzP3 (present in all three groups) and for O1P3,
O2
T6 (only in Group III); in the α-range for PzFp1, P3Fp1, PzF3, P3Fz, P3F3,
Pz
Fz, O1Fz, PzC3, P3C3 (only in Group III) and PzP3 (in Groups I and III), and in the β2-range for the O1Pz connection (only present in Group II). Such increased connectivity in Group III in the θ- and α-ranges in the frontal, parietal and occipital regions could be due to functional compensation of reduced sensory processing, which is the common reason of cognitive aging.


Originality. Age-related adaptive changes of the neural during testing of the brain performance are revealed. In context of our previous work on functional motility of nervous processes, the current study shows the difference between neuron network performance in people with an individual predisposition to error-free performance of a monotonous, repetitive task (brain performance test) and for rapid adaptation to new conditions (test on the functional motility of nervous processes).


Conclusion. The performance of the task with the fewest errors in Group II was achieved due to an optimal neural network and higher brain connectivity in the θ- and α-ranges, as well as in the β2-range, which, in addition to central and parietal regions (as in Groups I and III), more actively involved visual regions (O1Pz, O2P4).

Article Details

Section
Статті

References

Філімонова Н.Б. Комп’ютерна експрес-методика для визначення психофізіологічного стану людини. Культура здоров’я як предмет освіти: матер. ІІ Міжнар. наук.-метод. конф., Херсонський держ. пед. ун-т., 2000. С. 204-209.

Макаренко Н.В. Психофизиологические функции человека и операторский труд: К.: Наук. думка, 1991. 216 с.

Javaid H., Kumarnsit E., Chatpun S. Age-Related Alterations in EEG Network Connectivity in Healthy Aging. Brain Sciences. 2022. Vol. 12(2). P. 218. https://doi.org/10.3390/brainsci12020218

Marciani M. G., Maschio M., Spanedda F., Caltagirone C., Gigli G. L., & Bernardi G. Quantitative EEG Evaluation in Normal Elderly Subjects During Mental Processes: Age-Related Changes. International Journal of Neuroscience. 1994. Vol. 76(1–2). P. 131–140. https://doi.org/10.3109/00207459408985998

Kulaichev A. P. The informativeness of coherence analysis in EEG studies. Neuroscience and Behavioral Physiology. 2011. Vol. 41(3). P. 321.

Подковка О. І., Макарчук М. Ю., Філімонова Н. Б., Пампуха І. В., Нікіфоров М. М., Лоза В. М., Кравченко К. О. Особливості вікових змін організації активності головного мозку людини під час тестування функціональної рухливості нервових процесів. Фізіологічний журнал. 2024. Т. 70(5). С. 11-19. https://doi.org/10.15407/fz70.05.011.

Подковка О. І., Макарчук М. Ю., Філімонова Н. Б., Пампуха І. В., Нікіфоров М. М. Стан основних психофізіологічних функцій у військовослужбовців різного віку. Вісник Київського національного університету імені Тараса Шевченка. 2022. Т. 89(2). С. 23-27. DOI 10.17721/1728.2748.2022.89.23-27.

Черненко-Курагіна Н. П. Фізіологічні характеристики розумової діяльності людей з різними індивідуально-типологічними властивостями вищої нервової діяльності при низькому темпі переробки інформації. Вісник Черкаського університету. 2016. Т 1. С. 120-125.

Schroeder C. E., Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences. 2009. Vol. 32(1). P. 9-18.

Basar E., Basar-Erog˘lu, C., Karakas¸ S., Schu¨rmann M. Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? Neuroscience Letters. 1999. Vol. 259. P. 165–168.

Rojas G. M., Alvarez C., Montoya C.E., de la Iglesia-Vayá M., Cisternas J.E., & Gálvez M. Study of resting-state functional connectivity networks using EEG electrodes position as seed. Frontiers in Neuroscience. 2018. Vol. 12. https://doi.org/10.3389/fnins.2018.00235

[Електронний ресурс] URL: http://www.fmriconsulting.com/brodmann/Interact.html

Lee A., Ratnarajah N., Tuan T.A., Chen S.H., Qiu A. Adaptation of brain functional and structural networks in aging. PLoS One. 2015. Vol. 10(4): e0123462. doi: 10.1371/journal.pone.0123462.

Yordanova J., Falkenstein M., & Kolev V. Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clinical Neurophysiology. 2024. Vol. 159. P. 97-109.

Seidler R.D., Bernard J.A., Burutolu T.B., et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010. Vol. 34(5). P. 721-733. doi:10.1016/j.neubiorev.2009.10.005.

Cabeza R., Daselaar S.M., Dolcos F., Prince S.E., Budde M., Nyberg L. Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex. 2004.

Vol. 14(4). P. 364-375. doi:10.1093/cercor/bhg133.

Basar, E. (1998). Brain Function and Oscillations. II. Integrative Brain Function. Neurophysiology and Cognitive Processes. Berlin: Springer.

Monteiro T.S., King B.R., Zivari Adab H., Mantini D., Swinnen S.P. Age-related differences in network flexibility and segregation at rest and during motor performance. NeuroImage. 2019. Vol. 194. P. 93-104. https://doi.org/10.1016/j.neuroimage.2019.03.015.

Vysata O., Kukal J., Prochazka A., Pazdera L., Simko J., Valis M. Age-related changes in EEG coherence. Neurol Neurochir Pol. 2014. Vol. 48(1). P. 35-38. DOI: 10.1016/j.pjnns.2013.09.001.

Wróbel A. Beta activity: a carrier for visual attention. Acta Neurobiol. Exp. 2000. Vol. 60. P. 247-260.

Studler M., Gianotti L.R.R., Koch K., et al. Local slow-wave activity over the right prefrontal cortex reveals individual risk preferences. Neuroimage. 2022. Vol. 253: 119086. doi:10.1016/j.neuroimage.2022.119086.

Cona G., Scarpazza C. Where is the "where" in the brain? A meta-analysis of neuroimaging studies on spatial cognition. Hum Brain Mapp. 2019. Vol. 40(6). P. 1867-1886. doi: 10.1002/hbm.24496. PMID: 30600568; PMCID: PMC6865398.

Kwon S., Kim J., & Kim T. Neuropsychological activations and networks while performing visual and kinesthetic motor imagery. Brain Sciences. 2023. Vol 13(7). P. 983. https://doi.org/10.3390/brainsci13070983.