RELATIONSHIP BETWEEN THE GUT MICROBIOTA COMPOSITION AND BODY MASS INDEX

Main Article Content

Oksana Palladina
Anastasiia Kaliga

Abstract

The gut microbiome is a key topic for current research since it is known that intestinal microbiota has a great metabolic potential and contains not only thousands of taxa of various bacteria, but also microbes, viruses, archaea and, most importantly, more than three million genes, which makes it our “second genome”. A wide amount of research proves that the gut microbiome contributes to the health of the host. The function of the human intestinal microbiota  involves the  absorption of nutrients and the synthesis of vitamins, energy harvesting from the food, immune response and reduction of the inflammatory process. Human gut microbiome also takes part in lipid and glucose metabolism and production of short chain fatty acids that may act as energy substrates. It also takes part in neural and hormonal energy regulation of the body since hormone ghrelin, which is also known as the “hunger hormone” and acts as a stimulus for food intake, fat deposition, and growth hormone secretion, is positively correlated with the genera Bacteroides and Prevotella and negatively correlated with Lactobacillus, Bifidobacterium, Blautia coccoides, and Eubacterium rectale. The short-chain fatty acids stimulate the secretion of glucagon-like peptide-1 (GLP 1). GLP-1, in turn, stimulates the secretion of insulin and reduces appetite. It is also known that pre-, pro- and synbiotics as well as fecal transplantation from normal weight individuals to obese individuals may contribute to the obesity treatment. Still the precise mechanisms of gut microbiome regulation for further weight correction have not yet been established. The purpose of our study was to establish the relationship between the body mass index and the gut microbial composition in adults. Thus we conducted a literature search with inclusion criteria of studies on adults only, the mandatory presence of at least two groups - one with BMI < 25 (n>15), the other ≥ 25 (n>15).
Most results found no differences in alpha diversity between groups. It has been shown that obesity can affect beta diversity of microbes, as there are changes in bacterial taxa, as well as in the number of microorganisms. In individuals with excess body weight or obesity the Firmicutes/Bacteroidetes ratio is higher with more abundant Firmicutes, while Bacteroidetes are more abundant in normal weight individuals. Firmicutes are believed to be efficient in harvesting energy and absorbing nutrients, making food as accessible as possible and thus increasing the availability of calories consumed. People with a normal weight are characterized by bacteria Flavonifractor plautii, Faecalibacterium prausnitzii, Bacteroides faecichinchillae, Bacteroides thetaiotaomicron, Blautia wexlerae, Clostridium bolteae, Flavonifractor plauti, Lachnospiraceae that are naturally found in people with a healthy profile. The amount of Dorea, Blautia, Coprococcus, Subdoligranulum, Eubacterium ventriosum, Ruminococcus bromii, Ruminococcus obeum, Streptococcus, Dialister was higher in obese or overweight individuals. The difference in the microbial composition may be due to the gender. Further studies with a larger number of samples and observation of weight changes in dynamics, taking into account dietary interventions, are needed to understand the mechanism of the effect of bacteria on body mass index.

Article Details

Section
Статті

References

Fontana F, Longhi G, Tarracchini C, Mancabelli L, Lugli GA, Alessandri G, Turroni F, Milani C, Ventura M. The human gut microbiome of athletes: metagenomic and metabolic insights. Microbiome. 2023 Feb 14;11(1):27. doi: 10.1186/s40168-023-01470-9

Mohr AE, Jäger R, Carpenter KC, Kerksick CM, Purpura M, Townsend JR, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ortega-Santos CP, Ter Haar JA, Arciero PJ, Antonio J. The athletic gut microbiota. J Int Soc Sports Nutr. 2020 May 12;17(1):24. doi: 10.1186/s12970-020-00353-w

Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr. 2021 Dec 1;12(6):2190-2215. doi: 10.1093/advances/nmab077

Min L, Ablitip A, Wang R, Luciana T, Wei M, Ma X. Effects of Exercise on Gut Microbiota of Adults: A Systematic Review and Meta-Analysis. Nutrients. 2024 Apr 5;16(7):1070. doi: 10.3390/nu16071070

Walker RW, Clemente JC, Peter I, Loos RJF. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017 Aug;12 Suppl 1(Suppl 1):3-17. doi: 10.1111/ijpo

Cheng HY, Ning MX, Chen DK, Ma WT. Interactions Between the Gut Microbiota and the Host Innate Immune Response Against Pathogens. Front Immunol. 2019 Mar 29;10:607. doi: 10.3389/fimmu.2019.00607

Furber MJW, Young GR, Holt GS, Pyle S, Davison G, Roberts MG, Roberts JD, Howatson G, Smith DL. Gut Microbial Stability is Associated with Greater Endurance Performance in Athletes Undertaking Dietary Periodization. mSystems. 2022 Jun 28;7(3):e0012922. doi: 10.1128/msystems.00129-22

Bielik V, Kolisek M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int J Mol Sci. 2021 Jun 24;22(13):6803. doi: 10.3390/ijms22136803

Vonderheid SC, Tussing-Humphreys L, Park C, Pauls H, OjiNjideka Hemphill N, LaBomascus B, McLeod A, Koenig MD. A Systematic Review and Meta-Analysis on the Effects of Probiotic Species on Iron Absorption and Iron Status. Nutrients. 2019 Dec 3;11(12):2938. doi: 10.3390/nu11122938

Barone M, D'Amico F, Brigidi P, Turroni S. Gut microbiome-micronutrient interaction: The key to controlling the bioavailability of minerals and vitamins? Biofactors. 2022 Mar;48(2):307-314. doi: 10.1002/biof.1835

Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019 Jun;68(6):1108-1114. doi: 10.1136/gutjnl-2018-317503

Manos J. The human microbiome in disease and pathology. APMIS. 2022 Dec;130(12):690-705. doi: 10.1111/apm.13225

Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016 May 27;16(6):341-52. doi: 10.1038/nri.2016.42

Shah S, Mu C, Moossavi S, Shen-Tu G, Schlicht K, Rohmann N, Geisler C, Laudes M, Franke A, Züllig T, Köfeler H, Shearer J. Physical activity-induced alterations of the gut microbiota are BMI dependent. FASEB J. 2023 Apr;37(4):e22882. doi: 10.1096/fj.202201571R

Palladina O.L. Features of the gut microbiota of athletes and dietary possibilities of its correction. Adaptation and psychophysiological problems of physical culture and sports : I Intern. Scientific and Practical Conf., Kyiv-Cherkasy, 2023 Dec 7–8. P. 95–96. URL: https://uni-sport.edu.ua/sites/default/files/vseDocumenti/tezy_2023_1.pdf.

Baldanzi G, Sayols-Baixeras S, Ekblom-Bak E, Ekblom Ö, Dekkers KF, Hammar U, Nguyen D, Ahmad S, Ericson U, Arvidsson D, Börjesson M, Johanson PJ, Smith JG, Bergström G, Lind L, Engström G, Ärnlöv J, Kennedy B, Orho-Melander M, Fall T. Accelerometer-based physical activity is associated with the gut microbiota in 8416 individuals in SCAPIS. EBioMedicine. 2024 Feb;100:104989. doi: 10.1016/j.ebiom.2024.104989

Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019 Jul;25(7):1104-1109. doi: 10.1038/s41591-019-0485-4

Okamoto T, Morino K, Ugi S, Nakagawa F, Lemecha M, Ida S, Ohashi N, Sato D, Fujita Y, Maegawa H. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab. 2019 May 1;316(5):E956-E966. doi: 10.1152/ajpendo.00510.2018

Bongiovanni T, Yin MOL, Heaney LM. The Athlete and Gut Microbiome: Short-chain Fatty Acids as Potential Ergogenic Aids for Exercise and Training. Int J Sports Med. 2021 Dec;42(13):1143-1158. doi: 10.1055/a-1524-2095

Rasaei N, Heidari M, Esmaeili F, Khosravi S, Baeeri M, Tabatabaei-Malazy O, Emamgholipour S. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: an umbrella review of the trials' meta-analyses. Front Endocrinol (Lausanne). 2024 Mar 20;15:1277921. doi: 10.3389/fendo.2024.1277921

Cerdó T, García-Santos JA, G Bermúdez M, Campoy C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients. 2019 Mar 15;11(3):635. doi: 10.3390/nu11030635

Green M, Arora K, Prakash S. Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. Int J Mol Sci. 2020 Apr 21;21(8):2890. doi: 10.3390/ijms21082890

Min Y., Ma X., Sankaran K., Ru Y., et al. Sex-specific association between gut microbiome and fat distribution. Nat Commun. 2019 Jun 3;10(1):2408. doi: 10.1038/s41467–019–10440–5

Napolitano M, Covasa M. Microbiota Transplant in the Treatment of Obesity and Diabetes: Current and Future Perspectives. Front Microbiol. 2020 Nov 12;11:590370. doi: 10.3389/fmicb.2020.590370

Hu D, Zhao J, Zhang H, Wang G, Gu Z. Fecal Microbiota Transplantation for Weight and Glycemic Control of Obesity as Well as the Associated Metabolic Diseases: Meta-Analysis and Comprehensive Assessment. Life (Basel). 2023 Jun 30;13(7):1488. doi: 10.3390/life13071488

Leong KSW, Jayasinghe TN, Wilson BC, Derraik JGB, Albert BB, Chiavaroli V, Svirskis DM, Beck KL, Conlon CA, Jiang Y, Schierding W, Vatanen T, Holland DJ, O'Sullivan JM, Cutfield WS. Effects of Fecal Microbiome Transfer in Adolescents With Obesity: The Gut Bugs Randomized Controlled Trial. JAMA Netw Open. 2020 Dec 1;3(12):e2030415. doi: 10.1001/jamanetworkopen.2020.30415

Forero DA, Lopez-Leon S, González-Giraldo Y, Bagos PG. Ten simple rules for carrying out and writing meta-analyses. PLoS Comput Biol. 2019 May 16;15(5):e1006922. doi: 10.1371/journal.pcbi.1006922

Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol. 2020 Dec 10;11:604179. doi: 10.3389/fimmu.2020.604179

Komodromou I, Andreou E, Vlahoyiannis A, Christofidou M, Felekkis K, Pieri M, Giannaki CD. Exploring the Dynamic Relationship between the Gut Microbiome and Body Composition across the Human Lifespan: A Systematic Review. Nutrients. 2024 Feb 26;16(5):660. doi: 10.3390/nu16050660

Ibrahim Abdalla MM. Ghrelin - Physiological Functions and Regulation. Eur Endocrinol. 2015 Aug;11(2):90-95. doi: 10.17925/EE.2015.11.02.90

Most J., Goossens G. H., Reijnders D., et al. Gut microbiota composition strongly correlates to peripheral insulin sensitivity in obese men but not in women. Benef Microbes. 2017 Aug 24;8(4):557–562. doi: 10.3920/BM2016.0189

Leeuwendaal NK, Cryan JF, Schellekens H. Gut peptides and the microbiome: focus on ghrelin. Curr Opin Endocrinol Diabetes Obes. 2021 Apr 1;28(2):243-252. doi: 10.1097/MED.0000000000000616

Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio. 2024 Jan 16;15(1):e0203223. doi: 10.1128/mbio.02032-23

Companys J, Gosalbes MJ, Pla-Pagà L, Calderón-Pérez L, Llauradó E, Pedret A, Valls RM, Jiménez-Hernández N, Sandoval-Ramirez BA, Del Bas JM, Caimari A, Rubió L, Solà R. Gut Microbiota Profile and Its Association with Clinical Variables and Dietary Intake in Overweight/Obese and Lean Subjects: A Cross-Sectional Study. Nutrients. 2021 Jun 13;13(6):2032. doi: 10.3390/nu13062032

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature. 2009 Jan 22;457(7228):480-4. doi: 10.1038/nature07540

Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y, Takase K. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015 Aug 11;15:100. doi: 10.1186/s12876-015-0330-2

Gallè F, Valeriani F, Cattaruzza MS, Gianfranceschi G, Liguori R, Antinozzi M, Mederer B, Liguori G, Romano Spica V. Mediterranean Diet, Physical Activity and Gut Microbiome Composition: A Cross-Sectional Study among Healthy Young Italian Adults. Nutrients. 2020 Jul 21;12(7):2164. doi: 10.3390/nu12072164

Borgo F, Garbossa S, Riva A, Severgnini M, Luigiano C, Benetti A, Pontiroli AE, Morace G, Borghi E. Body Mass Index and Sex Affect Diverse Microbial Niches within the Gut. Front Microbiol. 2018 Feb 14;9:213. doi: 10.3389/fmicb.2018.00213

Assmann TS, Cuevas-Sierra A, Riezu-Boj JI, Milagro FI, Martínez JA. Comprehensive Analysis Reveals Novel Interactions between Circulating MicroRNAs and Gut Microbiota Composition in Human Obesity. Int J Mol Sci. 2020 Dec 14;21(24):9509. doi: 10.3390/ijms21249509

Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, Quintana-Navarro GM, Landa BB, Navas-Cortés JA, Tena-Sempere M, Clemente JC, López-Miranda J, Pérez-Jiménez F, Camargo A. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS One. 2016 May 26;11(5):e0154090. doi: 10.1371/journal.pone.0154090