The influence of different CO2 levels on hemodynamics: analytical review of literature

V. A. Zavhorodnia


Introduction. As the body responds instantly to changes in CO2 concentration by 0.1% and attracts dozens of compensatory mechanisms to bring it back to normal, the question of studying the mechanisms of carbon (IV) oxide effects on different parts of the cardiovascular system remains relevant.

Purpose. To analyze scientific literature on the effect of different levels of carbon dioxide on the central and peripheral hemodynamics of humans.

Methods. The analysis of scientific literature.

Results. The scientific literature concerning the influence of hyper- and hypocapnia on the central and peripheral hemodynamics of a person is analyzed. Changes in resistance of resistance vessels and blood flow velocity at different levels of CO2 in arterial blood are shown. It is noted that in contrast to direct vasodilator effects on coronary circulation, hypercapnia causes vasoconstriction in the pulmonary circulation. There is also a reactivity of heart rate variability, heart rate and cardiac output under such influences. According to modern data, a pure change in cardiac activity during hypercapnia depends on the balance between the direct inhibitory effect of CO2 and the compensatory adjustments mediated by the pathways of the chemoreflex. The manifestations and mechanisms of action of carbon (IV) oxide on the cardiovascular system are characterized. Because the decrease in the concentration of carbon dioxide in the blood leads to an increase in the affinity of oxygen to hemoglobin, and therefore to the development of hypoxia with all its consequences, shows a relatively greater importance of CO2 for the regulation of cerebral blood flow than O2. The mechanisms of activation of nitric oxide in hypercapnic states and its participation in vasodilation are described. Areas of application of carbon (IV) oxide level control and possible disturbances in its concentration fluctuations are shown.

Conclusion. The literature analysis shows the necessity of further investigation of both metodical and theoretical aspects of the influence of different levels of CO2 on human haemodynamicsparameters.


hypercapnia; CO2; hemodynamics; respiratory alkalosis; hyperventilation; hypocapnia


Drogovoz, S. M., Strigol, S. Yu., Kononenko, A. V., Zupanets, M. V., & Shtroblya, A. L. (2016). Mechanism of action of carboxytherapy. Farmakolohiia ta likarska toksykolohiia [Pharmacology and drug toxicology], 6 (51), 12-20 (in Rus ). doi:

Kavanagh, B. (2002). Normocapnia vs hypercapnia. Minerva Anestesiologica, 68(5), 346-350.

Semenov, A. M. (2016). Features of regulation of the functional state of the person by respiratory gymnastics and massage. Naukovyi chasopys NPU imeni M.P. Drahomanova [Scientific journal of NPU named after M.P. Drahomanov], 2(71), 303-306. (in Ukr.).

Mishustin, Yu. N. (2007). Getting out of the deadlock. Medicine is corrected by physiology. Samara: OJSC Samara Printing House, 80 p. (in Rus.).

Lyzogub,V. G., Savchenko, A. V., Zapeka, J. S., & Baytser, M. S. (2015). The role of carbon dioxide in the human body. Pershyi nezalezhnyi naukovyi visnyk [The first independent scientific bulletin], 4, 29-32. (in Ukr.).

Shaov, M. T., Shaova, Z. A., & Pshikova, O. V. (2009). Changes in the concentration of carbon dioxide in human blood under the influence of electroacoustic signals of nerve cells. Jug Rossii: jekologija, razvitie [South of Russia: ecology, development], 1, 136-141. (in Rus.). doi:

Drogovoz, S. M., Strigol, S. Yu., Kononenko, A. V., Zupanets, M. V., Strigol, C. Yu., Zupanets, & M. V. (2017). Pharmacological substantiation of carboxytherapy (CO2-therapy). Farmakologіja ta lіkars'ka toksikologіja [Pharmacology and drug toxicology], 1(52), 73-77. (in Rus.).

Lobanov, D. V., & Sheps, R. A. (2018). Analysis of microclimate parameters in rooms of mental work with the use of computers. Zhylyshchnoe khoziaistvo y kommunalnaia ynfrastruktura [Housing and Communal Infrastructure], 1, 47-53. (in Rus.).

Taurit V. R., & Korobleva N. A. (2016). Numerical study of conformity of the concentration of СО2 in the zone of people's stay with natural air in the equipment of the room by displacement ventilation of the new generation. Vestnik grazhdanskih inzhenerov [Journal of Civil Engineers], 2, 158-162. (in Rus.).

Baimakanova, G. E. (2013). Interpretation of arterial blood gas indicators. Atmosfera. Pulmunolohiia i alerholohiia [Atmosphere. Pulmonology and allergy], 2, 42-45. (in Rus.).

Khiat, L., Gustavo, A. & Leibaschoff, H. (2018). Clinical prospective study on the use of subcutaneous carboxytherapy in the treatment of diabetic foot ulcer. Surgical technology international, 32, 1-10.

Ponimasov, O. E. (2016). External manifestations of hypocapnia in underwater diving without a breathing apparatus. Innovacionnaja nauka: proshloe, nastojashhee, budushhee, [Innovative Science: Past, Present, Future], 4, 145-147. (in Rus.).

Sharma, S., Hashmi, M. F. & Rawat, D. (2019). Hypocarbia.StatPearls, Island.

Sur, M., & Shah, A.D. (2019). Alkalosis. StatPearls, Florida.

Stroev, Y. I., & Churilov, L. P. (2019). Hyperventilation hypocapnia as the leonardo da vinci's syndrome. Psychiatr Danub, 31(1), 75-78.

Sachan, D., & Goyal, S. (2018). Аssociation of hypocapnia in children with febrile seizures. J Pediatr Neurosci, 13(4), 388-391. doi: 10.4103/JPN.JPN_73_18.

Brat, K., Stastna, N., Merta, Z., Olson, L. J., Johnson, B. D., & Cundrle, I. Jr. (2019). Cardiopulmonary exercise testing for identification of patients with hyperventilation syndrome. PLoS One, 14(4), e0215997. doi: 10.1371/journal.pone.0215997.

Gouel-Chéron, A., de Chaisemartin, L., Jönsson, F., Nicaise-Roland, P., Granger, V., Sabahov, A., Guinnepain, M. T., Chollet-Martin, S., Bruhns, P., Neukirch, C., Longrois, D., & NASA study group. (2017). Lowend-tidal CO2 as a real-time severity marke rofintra-anaesthetic acute hypersensitivity reactions. Br J Anaesth, 1;119(5), 908-917. doi: 10.1093/bja/aex260.

Eastwood, G. M., Young, P. J., & Bellomo, R. (2014). The impact of oxygen and carbon dioxide management on out come after cardiac arrest. Curr Opin Crit Care, 20(3), 266-72. doi: 10.1097/MCC.0000000000000084.

Esnault, P., Roubin, J., Cardinale, M., D'Aranda, E., Montcriol, A., Cungi, P. J., Goutorbe, P., Joubert, C., Dagain, A., & Meaudre, E. (2019). Spontaneous hyperventilation in severe traumatic brain injury: incidence and association with poor neurological outcome. Neurocrit Care, 30(2),405-413. doi: 10.1007/s12028-018-0639-0.

Harrison, J. M., Gilchrist, P. T., Corovic, T. S., Bogetti, C., Song, Y., Bacon, S. L., & Ditto, B. (2017). Respiratory and hemodynamic contributions to emotion-related pre-syncopal vasovagal symptoms. Biol Psychol, 127,46-52. doi: 10.1016/j.biopsycho.2017.04.011.

Singh, U. P. (2017). Еvidence-based role of hypercapnia and exhalation phase in vagus nerve stimulation: insights into hypercapnic yoga breathing exercises. Journal of yoga & physical therapy, 7(3), 1000270-1000276. doi:10.4172/2157-7595.1000276.

Guyenet, P. G., Stornetta, R. L., Abbott, S. B., Depuy, S. D., & Kanbar, R. (2012). The retrotrapezoid nucleus and breathing. Arterial Chemoreception, 758, 115-122. doi: 10.1007/978-94-007-4584-1_16.

Guyenet, P. G., Bayliss, D. A., Stornetta, R. L., Kanbar, R., Shi, Y., Holloway, B. B., Souza, G. M. P. R., Basting, T. M., Abbott, S. B. G., & Wenker, I. C. (2018). Interdependent feedback regulation of breathing by the carotid bodies and the retrotrapezoid nucleus. J Physiol, 596(15),3029-3042. doi: 10.1113/JP274357.

Bhandare, A., Huckstepp, R. &Dale, N. (2019). Analyzing the brainstem circuits for respiratory chemosensitivity in freely moving mice.bioRxiv, 492041, 1-15. doi:10.1101/492041.

Falquetto, B., Oliveira, L. M., Takakura, A. C., Mulkey, D. K., & Moreira, T. S. (2018). Inhibition of the hypercapnic ventilatory response by adenosine in the retrotrapezoid nucleus in awake rats. Neuropharmacology, 138, 47-56. doi:10.1016/j.neuropharm.2018.05.029.

Fujii, N., Kashihara, M., Kenny, G. P., Honda, Y., Fujimoto, T., Cao, Y., & Nishiyasu, T. (2019). Carotid chemoreceptors have a limited role in mediating the hyperthermia-induced hyperventilation in exercising humans. J Appl Physiol,126(2), 305-313. doi: 10.1152/japplphysiol.00562.2018.

Drogovoz, S. M., Zelenkova, H., Shtroblya, A. L., Asadullayeva, N. Y., & UlanovaV. A. (2018). The potential of carboxytherapy in diseases of the urogenital system organs. Clinical pharmacy, 22(2), 4-9. doi:

Wojtala, M., Pirola, L., & Balcerczyk A. (2017). Modulation of the vascular endothelium functioning by dietary components, the role of epigenetics. BioFactors, 43(1), 5–16. doi:

Xinchun, Pi, Liang, Xie, & Patterson, C. (2018). Еmerging roles of vascular endothelium in metabolic homeostasis. Circulation Research, 123, 477–494. doi:

Siakste, N. I., Dzintare, M. Y., & Calvinsh, I. Ya. (2012). The role of NO induction in the mechanism of action of the cytoprotector olvasol, the original regulator of endothelial function. Medichnі perspekivi [Medical Perspectives], 17(2), 4-13. (in Rus.). doi:

Strazhesko, I. D., Akasheva, D. U., Dudinskaya, E. N., & Tkacheva, O. N. (2012). Aging of vessels: the main features and mechanisms. Kardiovaskuljarnaja terapija i profilaktika [Cardiovascular Therapy and Prevention], 11 (4), 93-100. (in Rus.). doi:

Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G., &Nishigaki, I. (2013). The vascular endothelium and human diseases. International Journal Biological Sciences, 9(10), 1057-69. doi: 10.7150/ijbs.7502.

Cahill, P. A., & Redmond, E. M. (2016). Vascular endothelium – gatekeeper of vessel health. Atherosclerosis, 248, 97-109.doi:

Delp, M. D., Charvat, J. M., Limoli, C. L., Globus, R. K., & Ghosh P. (2016). Аpollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Scientific Reports, 6, 29901. doi:

Collison, J. L., Carlin, L. M., Eichmann, M., Geissmann, F., & Peakman, M. (2015).Нeterogeneity in the locomotory behavior of human monocyte subsets over human vascular endothelium in vitro. Journan Immunology., 195(3), 1162-1170. doi:

Dudar, A. I. (2015). Discoveries and studies of nitric oxide in biological systems: a retrospective analysis. Nauka. Mysl': jelektronnyj periodicheskij zhurnal, [Science. Thought: an electronic periodical], 6, 8-13. (in Rus.).

Kuznetsova, V. L., & Solovieva, A. G. (2015). Nitric oxide: properties, biological role, mechanisms of action. Sovremennye problemy nauki i obrazovanija [Modern problems of science and education], 4, 11. (in Rus.).

Maron, B. A., & Michel, T. (2012). Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase. Circulation Journal, 76(11), 2497-2512. doi: 10.1253 / circj.cj-12-1207

Qian, J., & Fulton, D. (2013). Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front. Physiol, 4, 347. doi:

Jahshan, S., Dayan, L., & Jacob, G. (2017). Nitric oxide-sensitive guanylyl cyclase signaling affects CO2-dependent but not pressure-dependent regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol, 312(6), R948-R955. doi: 10.1152/ajpregu.00241.2016.

Dick, G. M., Bratz, I. N., Borbouse, L., Payne, G. A., Dincer, U. D., Knudson, J. D., Rogers, P. A., & Tune, J. D. (2011). Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation. Am J Physiol Heart Circ Physiol, 294, H2371–81. doi: 10.1016 / j.yjmcc.2011.07.004.

Forstermann, U., & Munzel, T. (2006). Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation, 113(13),1708-14. doi: 10.1161/CIRCULATIONAHA.105.602532.

Levett, D. Z., Fernandez, B. O., Riley, H. L., Martin, D. S., Mitchell, K., Leckstrom, C. A., Ince, C., Whipp, B. J., Mythen, M. G., Montgomery, H. E., Grocott, M. P., &Feelisch, M. (2011). The role of nitrogen oxides in human adaptation to hypoxia. Scientific Reports, 1, 109. doi:

Kuhlencordt, P. J., Chen, J., Han, F., Astern, J., & Huang, P. L. (2001). Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E knockout mice. Circulation, 103(25), 3099-104. doi: 10.1161/01.cir.103.25.3099.

Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato, H., Sato, H., Hori, M., Nakamura, Y., & Tanaka, T. (2002). Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet, 32(4), 650-4. doi: 10.1038 / ng1047.

Vikulov, A. D., Drattsev, E. Y., Melnikov, A. A., & Alekhin, V. V. (2009). Vascular tone and regular exercise. Fiziologija cheloveka [Human Physiology], 35(5), 127-133. (in Rus.).

Grishin, O. V., Basalaeva, S. V., Umanceva, N. D., Ustjuzhaninova N. V., Grishin, V. G., & Mitrofanov, I. M. (2011). Uvelichenieskorosti vydelenija СO2 v pokoe pri kratkovremennoj gipoksii u zdorovyh ljudej [An increase in the rate of release of CO2 at rest with short-term hypoxia in healthy people].Fiziologija cheloveka, 37(5), 77-83. (in Rus.).

Bukov, Ju. A., & Belousova, I. M. (2016). Ispol'zovanie dyhatel'nogo trenazhera v uchebnom processe po fizicheskomu vospitaniju s cel'ju korrekcii ventiljacionnyh tipov u studentov podgotovitel'noj medicinskoj gruppy [The use of a breathing simulator in the educational process for physical education in order to correct ventilation types in students of the preparatory medical group]. Uchenye zapiski universiteta imeni P.F. Lesgafta, 2(132), 49-54. doi:10.5930/issn.1994-4683.2016.02.132.p49-54. (in Rus.).

Drogovoz, S. M., Strigol, S. Yu., Kononenko, A. V., Zupanets, M. V., Strigol, C. Yu., Zupanets, M. V. (2017). Pharmacological substantiation of carboxytherapy (CO2-therapy). Farmakologіja ta lіkars'ka toksikologіja [Pharmacology and drug toxicology], 1(52), 73-77.(in Rus.).

Lafave, H. C., Zouboules, S. M., James, M. A., Purdy, G. M., Rees, J. L., Steinback, C. D., Ondrus, P., Brutsaert, T. D., Nysten, H. E., Nysten, C. E., Hoiland, R. L., Sherpa, M. T., & Day, T. A. (2019). Steady-state cerebral blood flow regulation at altitude: interaction between oxygen and carbon dioxide. EurJApplPhysiol, 119(11-12), 2529-2544. doi: 10.1007/s00421-019-04206-6.

Willie, C. K., MacLeod, D. B., Smith, K. J, Lewis, N. C., Foster, G. E., Ikeda, K., Hoiland, R. L., & Ainslie, P. N. (2015). The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude. J Cereb Blood Flow Metab, 35(5), 873-81. doi:10.1038/jcbfm.2015.4.

Charter, M. E., Lamb, I. R., & Murrant, C. L. (2018). Arteriolar and capillary responses to CO2 and H+ in hamster skeletal muscle microvasculature: Implications for active hyperemia. Microcirculation, 25(7), e12494. doi: 10.1111/micc.12494.

Immink, R. V., Pott, F. C., Secher, N. H., & van Lieshout, J. J. (2014). Hyperventilation, cerebral perfusion and syncope. J ApplPhysiol, 116(7), 844-51. doi: 10.1152/japplphysiol.00637.2013.

Ainslie, P. N., Celi, L., Grattan, K., Peebles, K., & Ogoh, S. (2008). Dynamic cerebral autoregulation and baroreflexsen sitivity during mode stand severestep changesin arterial PCO2. Brain Res, 1230, 115-24. doi: 10.1016/j.brainres.2008.07.048.

Duffin, J., Sobczyk, O., Crawley, A., Poublanc, J., Venkatraghavan, L., Sam, K., Mutch, A., Mikulis, D., & Fisher, J. (2017). The role of vascular resistance in BOLD responses to progressive hypercapnia. HumBrainMapp, 38(11), 5590-5602. doi: 10.1002/hbm.23751.

Friend, A. T., Balanos, G. M., Lucas, S. J. E. (2019). Isolating the independent effects of hypoxia and hyperventilation-induced hypocapnia on cerebral haemodynamics and cognitive function. Exp Physiol, 104(10), 1482-1493. doi: 10.1113/EP087602.

Kulikov, V. P., Tregub, P. P., Osipov, I. S., & Trukhanov, A. I. (2019). Hypercapnic hypoxia as a potential means to extend life expectancy and improve physiological activity in mice. Biogerontology, 20(5), 677-686. doi: 10.1007/s10522-019-09821-6.

Stocchetti, N., Maas, A. I., Chieregato, A., & Van Der Plas, A. A. (2005). Hyperventilation in head injury. Chest, 127(5), 1812-1827. doi:10.1378/chest.127.5.1812.

Ellis, L. A., Ainslie, P. N., Armstrong, V. A., Morris, L. E., Simair, R. G., Sletten, N. R., Tallon, C. M., & McManus, A. M. (2017). Anterior cerebral blood velocity and end-tidal CO2 responses to exercise differin children and adults. Am J Physiol Heart Circ Physiol, 312(6), H1195-H1202. doi: 10.1152/ajpheart.00034.2017.

Cassaglia, P. A., Griffiths, R. I., & Walker, A. M. (2008). Sympathetic withdrawal augments cerebral blood flow during acute hypercapnia in sleeping lambs. Sleep, 31(12), 1729–1734. doi:10.1093/sleep/31.12.1729.

Miller, K. B., Howery, A. J., Harvey, R. E., Eldridge, M. W., & Barnes, J. N. (2018). Cerebrovascular reactivity and central arterial stiffness in habitually exercising healthy adults. FrontPhysiol, 9, 1096. doi:10.3389/fphys.2018.01096.

Willie, C. K., Macleod, D. B., Shaw, A. D., Smith, K. J., Tzeng, Y. C., Eves, N. D., Ikeda, K., Graham, J., Lewis, N. C., Day, T. A., & Ainslie, P. N. (2012). Regional brain blood flow in man during acute changes in arterial blood gases. JPhysiol, 590(14), 3261-75. doi: 10.1113/jphysiol.2012.228551.

Sato, K., Sadamoto, T., Hirasawa, A., Oue, A., Subudhi, A. W., Miyazawa, T., & Ogoh, S. (2012). Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries. J Physiol, 590(14), 3277-90. doi: 10.1113/jphysiol.2012.230425.

Hoiland, R. L., Tymko, M. M., Bain, A. R., Wildfong, K. W., Monteleone, B., & Ainslie, P. N. (2016). Carbon dioxide-mediated vasomotion of extra-cranial cerebral arteries in humans: a role for prostaglandins? J Physiol, 594(12), 3463-81. doi: 10.1113/JP272012.

Terla, V., Rajbhandari, G. L., Kurian, D., & Pesola, G. R. (2019). А case of right ventricular dysfunction with right ventricular failure secondary to obesity hypoventilation syndrome. Am J Case Rep, 20, 1487-1491. doi: 10.12659/AJCR.918395.

Ogoh, S., Sato, K., Okazaki, K., Miyamoto, T., Hirasawa, A., & Shibasaki, M. (2014). Hyperthermia modulates regional differences in cerebral blood flow to changesin CO2. J Appl Physiol, 117(1), 46-52. doi: 10.1152/japplphysiol.01078.2013.

Pourcyrous, M., Chilakala, S., Elabiad, M. T., Parfenova, H., & Leffler, C. W. (2018). Does prolonged severe hypercapnia interfere with normal cerebrovascular function in piglets? Pediatr Res, 84(2), 290-295. doi: 10.1038/s41390-018-0061-5.

Sharkey, R. A., Mulloy, E. M., & O'Neill, S. J. (1999). The acute effects of oxygen and carbon dioxide on renal vascularre sistance in patients with an acute exacerbation of COPD. Chest, 115(6), 1588-92. doi: 10.1378/chest.115.6.1588.

Wang, L., Grant, C., Fortune, B., & Cioffi, G. A. (2008). Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique. Exp Eye Res, 86(6), 908-13. doi: 10.1016/j.exer.2008.03.005.

Salinet,A. S. M., Minhas, J. S., Panerai, R. B., Bor-Seng-Shu, E., & Robinson, T. G. (2019). Do acute stroke patients develop hypocapnia? A systematic review and meta-analysis. Journal of the Neurological Sciences,402, 30-39.doi:10.1016/j.jns.2019.04.038.

Curley, G., Kavanagh, B. P., & Laffey, J. G. (2010). Hypocapnia and the injured brain: more harm than benefit. Critical Care Medicine, 38(5), 1348-1359. doi:10.1097/CCM.0b013e3181d8cf2b.

Nagibovich, O. A., Ukhovsky, D. M., Zhekalov, A. N., Tkachuk, N. A., Arzhavkina, L. G., Bogdanova, E. G., Murzina, E. V., Belikova, T. M. (2016). Mechanisms of hypoxia in the Arctic zone of the Russian Federation. Vestnik rossijskoj voenno-medicinskoj akademii [Bulletin of the Russian Military Medical Academy], 2(54), 202-205.(in Rus.).

Grishin, O. V., Averko, N. N., Zhilina, I. G., Grishin, V. G., & Kovalenko, Yu. (2012). Psychogenic shortness of breath and hypocapnia in patients with ischemic heart disease before and after coronary artery bypass surgery. Angiologija i sosudistaja hirurgija. Patologija krovoobrashhenija i kardiohirurgija [Angiology and vascular surgery. Circulatory pathology and cardiac surgery], 1, 39-42. (in Rus.).

Tateyama, T., Asada, M., Suzuki, H., Hashimoto, K., Okazaki, K., & Okutsu, Y. (1994). Effect of 10% carbon dioxide on regional myocardial tissue oxygen tension and myocardial metabolism. Masui, 43(1), 59-63.

Lanza, G. A., Careri, G., & Crea, F. (2011). Mechanisms of coronary artery spasm. Circulation, 124, 1774–82. doi: 10.1161/CIRCULATIONAHA.111.037283.

Sullivan, G. M., Kent, J. M., Kleber, M., Martinez, J. M., Yeragani, V. K., & Gorman, J. M. (2004). Effects of hyperventilation on heart rate and QT variability in panic disorder pre-and post-treatment. Psychiatry Research, 125(1), 29-39. doi:10.1016/j.psychres.2003.10.002.

Van Diest, I., Verstappen, K., Aubert, A. E., Widjaja, D., Vansteenwegen, D., & Vlemincx, E. (2014). Inhalation/exhalation ratio modulates the effect of slow breathing on heart rate variability and relaxation. Applied psychophysiology and biofeedback, 39(3-4), 171-180. doi:10.1007/s10484-014-9253-x.

Kovalenko, S. O., & Kudiy, L. І. (2002). Analysis of the variability of cardiac rhythm reactions in changes of body position. Visnyk Cherkaskoho universytetu. Seriia biolohichni nauky [Visnyk of Cherkasy University. Series of biological sciences], 39, 70-74. (in Ukr.).

Kovalenko, S. O., Kudiĭ, L. I., & Kalenichenko, O. V. (2004). Heart rhythm variability in individuals with different respiration frequency. Fiziolohichnyi zhurnal [Physiological journal], 50(6), 43-47. (in Ukr.).

Kovalenko, S. A., & Kudii, L. I. (2006). Heart rate variability in subjects with different respiratory rates. Human Physiology, 32(6), 742-743.

Crystal, G. J., Czinn, E. A., & Salem, M. R. (2014). The mechanism of increased blood flow in the brain and spinal cord during hemodilution. Anesth Analg, 118, 637–43. doi: 10.1213 / ANE.0000000000000078.

Del Pozzi, A. T., Schwartz, C. E, Tewari, D., Medow, M. S., & Stewart, J. M. (2014). Reduced cerebral blood flow with orthostasis precedes hypocapnic hyperpnea, sympatheticactivation, and posturaltachy cardia syndrome. Hypertension, 63(6), 1302-8. doi: 10.1161/HYPERTENSIONAHA.113.02824.

Mahdi, M., Joseph, N. J., Hernandez, D. P., Crystal, G. J., Baraka, A., & Salem, M. R (2011). In duced hypocapnia is effective in treating pulmonary hypertension following mitralvalvere placement. Middle East J Anaesthesiol, 21(2), 259-67.

Jersenius, U., Fors, D., Rubertsson, S., & Arvidsson, D. (2006). The effects of experimental venous carbon dioxide embolization on hemodynamic and respiratory variables. Acta Anaesthesiol Scand, 50(2), 156-62. doi: 10.1111 / j.1399-6576.2006.00933.x.

Baković, D., Eterović, D., Valic, Z., Saratlija-Novaković, Ž., Palada, I., Obad, A., & Dujić, Ž. (2006). Increased pulmonary vascular resistance and reduced stroke volume in association with CO2 retention and inferior vena cava dilatation. Journal of applied physiology, 101(3), 866-872. doi:10.1152/japplphysiol.00759.2005.

Shoemaker, J. K., O'Leary, D. D., & Hughson R. L. (2001). PET CO2 inversely affects MSNA response to orthostatic stress. Heat and circulatory physiology, 281(3), Н1040-Н1046. doi: 10.1152/ajpheart.2001.281.3.H1040.

Gavrisyuk, V. K. (2006). Chronic pulmonary heart: mechanisms of pathogenesis and principles of therapy. Ukr. pul'monol. Zhurn [Pulmonol. Journal]. 4, 6-13. (in Rus.).

Full Text: PDF


  • There are currently no refbacks.
2014 2 36
2015 2 19
2016 1 2
2017 1 2
2018 1 2
2019 1 2



Journal Content