Ontogenetic Structure of Allium ursinum Populations in the Territory of Sumy Geobotanical Region

O. V. Kholodkov

Abstract


Introduction. Since most of species exist in nature as populations, maintenance of biodiversity and phytodiversity, as its compound, assumes particular importance, specifically at population level. Thereby, there is an urgent need to conduct integrated phytopopulation researches with one of priority goals to study rare and endangered species as the weakest phytocenosis point. In its turn, evaluation of ontogenetic structure of their cenopopulations is usually a significant part of integrated population analysis of these plants.

Purpose Aim of the paper was to find out ontogenetic structure of Allium ursinum cenopopulations in various phytocenoces ofSumy geobotanical region.

Methods. We studied six Allium ursinum cenopopulations, located in the territory of Sumy geobotanical region within following plant aggregations: No. 1 (П1) – in Fraxineto (excelsioris)–Acereto (platanoiditis)–Quercetum (roboris) franguloso (alni)−aegopodiosum (podagrariae), No. 2 (П2) – Fraxineto (excelsioris)–Aceretum (platanoiditis) coryloso (avellanae)−urticosum (dioici), No. 3 (П3) – Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodiosum (podagrariae), No. 4 (П4) – Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodioso (podagrariae)−stellariosum (holosteae), No. 5 (П5) –Urticetum (dioici) alliosum (ursini), No. 6 (П6) – Acereto (platanoiditis)–Fraxineto (excelsioris)–Quercetum (roboris) lunarioso(redivivae)– urticosum (dioici).

A share of ramets of different ontogenetic states was determined in Allium ursinum cenopopulations under study.

Results. It was established that all investigated Allium ursinum cenopopulations are strictly divided in two groups according to representation in spectra of plants of various ontogenetic states. The first group is formed by cenopopulations from Fraxineto (excelsioris)–Acereto (platanoiditis)–Quercetum (roboris) franguloso (alni)−aegopodiosum (podagrariae), Fraxineto (excelsioris)–Aceretum (platanoiditis) coryloso (avellanae)−urticosum (dioici), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodiosum (podagrariae), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodioso (podagrariae)−stellariosum (holosteae) aggregations. They are characterized by prevalence of total share of (at the rate of 57.89–93.62%) beforegenerative individuals. The second group includes cenopopulations from Urticetum (dioici)–alliosum (ursini), Acereto (platanoiditis) – Fraxineto (excelsioris)–Quercetum (roboris) lunarioso(redivivae)–urticosum (dioici) aggregations. Prevalence of total share of (at the rate of 73.14–79.18%) generative and appearance of senile (at the rate of 2.64–4.12%) ramets are typical for them. A very small amount of seedlings is a distinctive feature of cenopopulation from Urticetum (dioici) alliosum (ursini) aggregation. On the contrary, specific weight of seedlings in cenopopulations from Fraxineto (excelsioris)–Aceretum (platanoiditis) coryloso (avellanae)−urticosum (dioici) aggregation is considerable (12.33%), juvenile plants constitute a significant part as well (55.88%).

Ontogenetic spectrum of A. ursinum cenopopulations from Fraxineto (excelsioris)–Aceretum (platanoiditis) coryloso (avellanae)−urticosum (dioici) aggregation displays bimodality, but after all, the clearly defined maximum of juvenile plants (55.88%) creates grounds to refer it to sinistral ones. Ontogenetic spectra of cenopopulations from Fraxineto (excelsioris)–Acereto (platanoiditis)–Quercetum (roboris) franguloso (alni)−aegopodiosum (podagrariae), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodiosum (podagrariae), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodioso (podagrariae)−stellariosum (holosteae) aggregations are sinistral as well. Ontogenetic spectra of cenopopulations from Urticetum (dioici) alliosum (ursini), Acereto (platanoiditis)–Fraxineto (excelsioris)–Quercetum (roboris) lunarioso (redivivae)– urticosum (dioici) aggregations represent centered category.

Evaluation results of A. ursinum cenopopulation ontogenetic structure prove that Allium ursinum cenopopulations from Fraxineto (excelsioris)–Acereto (platanoiditis)–Quercetum (roboris) franguloso (alni)−aegopodiosum (podagrariae), Fraxineto (excelsioris)–Aceretum (platanoiditis) coryloso (avellanae)−urticosum (dioici), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodiosum (podagrariae), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodioso (podagrariae)−stellariosum (holosteae) aggregations have aging index value equal to 0%, as well as quite high values of generativity index (6.38–42.11%) and high (18.67–93.62%) values of recoverability index. In total, all these four Allium ursinum cenopopulations have age index value equal to 0.

At the same time Allium ursinum cenopopulations from Urticetum (dioici) alliosum (ursini), Acereto (platanoiditis)–Fraxineto (excelsioris)–Quercetum (roboris) lunarioso (redivivae)–urticosum (dioici) aggregations have aging index values equal to 2.64% and 4.13% respectively; and the highest values of generativity index (79.18% and 73.14%); but recoverability index values in these two cenopopulations are the lowest ones (18.18% and 22.73%). Age index values in these Allium ursinum cenopopulations equal to 0.15 and 0.18 respectively. Correlation of ∆/ω in Allium ursinum cenopopulations under study stands out for quite a considerable variation: from 0.06/0.21 to 0.25/0.67 .

In general, Allium ursinum cenopopulations are not notable for high diversity regarding their belonging to certain groups according to ontogenetic structure characteristics. Although, we applied various approaches to determine cenopopulation types, they represented only one or two groups within each classification. Thus, our records showed that according to T.O. Rabotnov classification cenopopulations were: invasive - from Fraxineto (excelsioris)–Acereto (platanoiditis)–Quercetum (roboris) franguloso (alni)−aegopodiosum (podagrariae), Fraxineto (excelsioris)–Aceretum (platanoiditis) coryloso (avellanae)− urticosum (dioici), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodiosum (podagrariae), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodioso (podagrariae)−stellariosum (holosteae) aggregations, and normal - from Urticetum (dioici) alliosum (ursini), Acereto (platanoiditis)–Fraxineto (excelsioris)–Quercetum (roboris) lunarioso(redivivae)–urticosum (dioici) aggregations. According to L. O. Zhukova classification all Allium ursinum cenopopulations represent normal group, and according to L. V. Zhyvotovskyi classification cenopopulations turned out to be: young – from Fraxineto (excelsioris)–Acereto (platanoiditis)–Quercetum (roboris) franguloso (alni)−aegopodiosum (podagrariae), Fraxineto (excelsioris)–Aceretum (platanoiditis) coryloso (avellanae)−urticosum (dioici), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodiosum (podagrariae), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodioso (podagrariae)−stellariosum (holosteae) aggregations; and maturing – from Urticetum (dioici) alliosum (ursini), Acereto (platanoiditis)–Fraxineto (excelsioris)–Quercetum (roboris) lunarioso(redivivae)–urticosum (dioici ) aggregations.

Originality. For the first time we conducted integrated phytopopulation researches of Allium ursinum cenopopulations in Sumy geobotanical region.

Conclusion. Diversity of ontogenetic spectra is a typical feature of Allium ursinum cenopopulations within the study region. In our opinion, such diversity is a result of fact that Allium ursinum cenopopulations grow in various ecological and coenotic conditions (from well-moistened, rich on organic matter beam bottoms to areas with primary succession changes in places of final felling operations). Generalized integrated evaluation of ontogenetic structure characteristics of Allium ursinum cenopopulatins was conducted with the use of classical and latest approaches. It proved objectively that active recovery processes and intense penetration into forest aggregations were typical for them. Two cenopopulations make an exception. The first one is from Urticetum (dioici) alliosum (ursini) aggregation that was formed in the place of two-year final felling operations. Tree layer is completely destroyed and active succession changes occur here. The second one is from Acereto (platanoiditis)–Fraxineto (excelsioris)–Quercetum (roboris) lunarioso (redivivae)–urticosum (dioici) aggregation. It is the territory of public botanic preserve “Bannyi Yar”, where Lunaria rediviva L. has become dominant in grass and subshrub layer in the preserve environment. Thereafter, a significant increase of Allium ursinum representation in composition of late spring ephemeral synusia can happen in four of six cenopopulations under study (in Fraxineto (excelsioris)–Acereto (platanoiditis)–Quercetum (roboris) franguloso (alni)−aegopodiosum (podagrariae), Fraxineto (excelsioris)–Aceretum (platanoiditis) coryloso (avellanae)− urticosum (dioici), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodiosum (podagrariae), Acereto (platanoiditis)–Tilieto (cordatae)–Quercetum (roboris) aegopodioso (podagrariae)−stellariosum (holosteae) aggregations) during next 3-5 years.

The prospect of further scientific researches lies in application of morphometric and vitality analyses to Allium ursinum, aimed at determination of dimension parameters and vitality level of plants and cenopopulations of this species. 

ntrodu


Keywords


Allium ursinum; cenopopulation; Sumy geobotanical region; ontogenetic structure; ontogenetic spectra

References


Zlobin Y.A. (2009). Population ecology of plants: current state, points of progress: monograph. Sumy: Universitetskaya Kniga. 263 (in Russ.).

Zlobin Y.A., Sklyar V.G., Klimenko A.A. (2013). Populations of rare species of plants: theoretical foundations and methodology of study: monograph. Sumy: Universitetskaya Kniga. 439 (in Russ.).

Didukha Y.P. (Ed.). (2009). The Red Book of Ukraine.Vegatable Kingdom. Kyiv: Globalkonsaltyng. 900 (in Ukr.).

(1938-1965) Flora of USSR: in 12 volumes. Kyiv: Akademiia Nauk URSR. 1-12 (in Ukr.).

Karpenko K.K., Rodinka O.S., Vakal A.P. (Eds.) (2002). Distribution, conservation status and recommendations for protection of rare and endangered plant species in the basin of Psel river in the territory of Sumy and Krasnopillia districts of Sumy region. Ecological studies of river basins of the Left-Bank Ukraine: Collected works (based on Ukrainian scientific and practical conference, Sumy city, November 11-12, 2002). Sumy: SumSPU named after Makarenko A.S. 144-149 (in Ukr.).

Starostenkova M.M. (1978). Ramson – Allium ursinum L.Biological Flora of Moscow region (Biologicheskaya Flora Moskovskoi oblasti). 5, 52-61 (in Russ.).

Panchenko S.M. (2007). Use of harmless methods of morphometric analysis in case of Huperzia selago. Reserve business in Ukraine (Zapovidna sprava v Ukrainy). 13, 106-110. (in Ukr.).

Lavrenko E.M., Korchagina A.A. (Eds.). (1960) Field Geobotany (II volume). Moscow-Leningrad: Akademiya Nauk SSSR. 500 (in Russ.).

Lavrenko E.M., Korchagina A.A. (Eds.). (1964) Field Geobotany (III volume). Moscow-Leningrad: Nauka. 531 (in Russ.).

Kovalenko I.M. (2005). Population structure of grass and subshrub layer in forest phytocenoses of Desniansko-Starohutskiy National Park. 1. Ontogenetic structure. Ukrainian botanical journal (Ukrainskyi botanichnyi zhurnal). 5, 707-714 (in Ukr.).

Glotov N.V. (1998). On estimation of age structure parameters of plant populations. Life of Populations in Heterogeneous Environment (Zhizn populyatsiy v geterogenoy srede). Yoshkar-Ola. 1, 146-149 (in Russ.).

Zhivotovskiy L.A. (2001). Ontogenetic states, effective density and classification of plant populations. Ecology (Ekologiya). 1, 3-7 (in Russ.).


Full Text: PDF

Refbacks

  • There are currently no refbacks.
Archive
2014 2 36
2015 2 19
2016 1 2
2017 1 2
2018 1 2
2019 1  

User

Information

Journal Content

Browse

Language